We summarize what we assess as the past year's most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2°C.
MULTIFILE
09-11-2022Purpose As a step toward more firmly establishing factors to promote retention among younger employees in the hospitality industry, this study aims to focuses on fun in the workplace (fun activities, manager support for fun and coworker socializing) and training climate (organizational support, manager support and job support) as potential antecedents of turnover in a European context. Design/methodology/approach Logistic regression was used to analyze the impact of fun and training climate on turnover with a sample of 902 employees from Belgium, Germany and The Netherlands. Data on fun and training climate were obtained through surveys, which were paired with turnover data from organizational records. Findings With respect to fun in the workplace, group-level manager support for fun and coworker socializing were significantly related to turnover, but not fun activities. With respect to training climate, individual-level job support was significantly related to turnover, but not organizational support and manager support. Research limitations/implications As the data were obtained from employees from one organization, further research would be valuable with additional samples to substantiate the generalizability of the results. Practical implications Given the challenge of turnover, organizations should foster informal aspects of fun in the workplace and learning opportunities to promote retention. Originality/value The study examined the fun–turnover relationship in a context outside of the USA where previous fun–turnover research has been conducted, and it examined fun relative to training climate, which has not been studied heretofore. This study also investigated group- and individual-level effects of both fun and training climate on turnover.
European Union’s vulnerability to climate change stretches far beyond its borders because many of its economic sectors, such as meat and dairy, use raw materials sourced from far afield. Cross-border climate vulnerability is a relatively new subject in scientific literature, while of high societal and economic relevance. We quantify these climate vulnerabilities with a focus on drought risk and assessed them for 2030, 2050, 2085 and for RCP 2.6 and 6.0 climate scenarios. Here we find that more than 44% of the EU agricultural imports will become highly vulnerable to drought in future because of climate change. The drought severity in production locations of the agricultural imports in 2050 will increase by 35% compared to current levels of drought severity. This is particularly valid for imports that originate from Brazil, Indonesia, Vietnam, Thailand, India and Turkey. At the same time, imports from Russia, Nigeria, Peru, Ecuador, Uganda and Kenya will be less vulnerable in future. We also report that the climate vulnerabilities of meat and dairy, chocolate (cocoa), coffee, palm oil-based food and cosmetic sectors mainly lie outside the EU borders rather than inside.
MULTIFILE
31-12-2020The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
Family Dairy Tech Sustainable and affordable stable management systems for family dairy farms in India. An example of Dutch technology that is useful to an ?emerging economy?. Summary Problem The demand for dairy products in India is increasing. Small and medium-sized family farmers want to capitalize on this development and the Indian government wants to support them. Dutch companies offer knowledge and a wide range of products and services to improve dairy housing systems and better milk quality, in which India is interested. However, the Dutch technology is sophisticated and expensive. For a successful entry into this market, entrepreneurs have to develop affordable and robust (?frugal?) systems and products adapted to the Indian climate and market conditions. The external question is therefore: ?How can Dutch companies specialised on dairy housing systems adapt their products and offer these on the Indian market to contribute to sustainable and profitable local dairy farming??. Goal Since 2011, VHL University of Applied Sciences (VHL) is collaborating with a college and an agricultural information center Krishi Vigyan Kendra (KVK), Baramati, Pune district, Maharashtra State India. In this region many small-scale dairy farmers are active. Within this project, KVK wants to support farmers to scale up their farm form one or a few cows up to 15 to 100 cows, with a better milk quality. In this innovative project, VHL and Saxion Universities of Applied Sciences, in collaboration with KVK and several Dutch companies want to develop integrated solutions for the growing number of dairy farms in the State of Maharashtra, India. The research questions are: 1. "How can, by smart combinations of existing and new technologies, the cow-varieties and milk- and stable-management systems in Baramati, India, for family farmers be optimized in an affordable and sustainable way?" 2. "What are potential markets in India for Dutch companies in the field of stable management and which innovative business models can support entering this market?" Results The intended results are: 1. A design of an integral stable management system for small and medium-sized dairy farms in India, composed of modified Dutch technologies. 2. A cattle improvement programme for robust cows that are adapted to the conditions of Maharashtra. 3. An advice to Dutch entrepreneurs how to develop their market position in India for their technologies. 4. An advice to Indian family farmers how they can increase their margins in a sustainable way by employing innovative technologies.