In this mixed methods study, a moderated mediation model predicting effects of leader-member exchange (LMX) and organizational citizenship behaviors (OCB) on innovative work behaviors, with employability as a mediator, has been tested. Multi-source data from 487 pairs of employees and supervisors working in 151 small and medium-sized enterprises (SMEs) supported our hypothesized model. The results of structural equation modelling provide support for our model. In particular, the benefits of close relationships and high-quality exchanges between employee and supervisor (LMX), and fostering individual development as a result of employees’ OCB have an indirect effect on innovative work behaviors through positive effects on workers’ employability. Innovative work behaviors depend on employees’ knowledge, skills, and expertise. In other words, enhancing workers’ employability nurtures innovative work behaviors. In addition, we found a moderation effect of organizational politics on the relationship between employability and innovative work behaviors. Secondly, qualitative methods focusing on experiences of the antecedents and outcomes of employability were used to complement our quantitative results. All in all, this study has important consequences for managerial strategies and practices in SMEs and call for an awareness of the dysfunctional effect of perceived organizational politics.
The question of how to design climate-resilient landscapes plays a major role in the European projects in which the green university has been involved, such as Future Cities and F:ACTS!. These are projects in which various European organizations, government authorities and universities have joined forces to find an answer to climate-related issues. Van Hall Larenstein also collaborates with Almere, a relatively new Dutch municipality that is changing rapidly and that prioritizes climate resilience in its development. Over the years there has been a clear development in climate-adaptive planning, both in education and in practice.
MULTIFILE
Climate change is now considered more than just an environmental issue, with far-reaching effects for society at large. While the exact implications of climate change for policing practice are still unknown, over the past two decades criminologists have anticipated that climate change will have a number of effects that will result in compromised safety and security. This article is informed by the outcome of a co-creation workshop with 16 practitioners and scholars of diverse backgrounds based in The Netherlands, who sought to conceptualize and systematize the existing knowledge on how climate change will most likely impact the professional practice of the Dutch (or any other) police. These challenges, with varying degrees of intensity, are observable at three main levels: the societal, organizational, and individual level. These levels cannot be separated neatly in practice but we use them as a structuring device, and to illustrate how dynamics on one level impact the others. This article aims to establish the precepts necessary to consider when exploring the intersection between climate change and policing. We conclude that much still needs to be done to ensure that the implications of climate change and the subject of policing are better aligned, and that climate change is recognized as an immediate challenge experienced on the ground and not treated as a distant, intangible phenomenon with possible future impacts. This starts with creating awareness about the possible ways in which it is already impacting the functioning of policing organizations, as well as their longer-term repercussions.
MULTIFILE
The transition to a circular, resource efficient construction sector is crucial to achieve climate neutrality in 2050. Construction stillaccounts for 50% of all extracted materials, is responsible for 3% of EU’s waste and for at least 12% of Green House Gas emissions.However, this transition is lagging, the impact of circular building materials is still limited.To accelerate the positive impact of circulair building materials Circular Trust Building has analyzed partners’ circular initiatives andidentified 4 related critical success factors for circularity, re-use of waste, and lower emissions:1. Level of integration2. Organized trust3. Shared learning4. Common goalsScaling these success factors requires new solutions, skills empowering stakeholders, and joint strategies and action plans. Circular TrustBuilding will do so using the innovative sociotechnical transition theory:1.Back casting: integrating stakeholders on common goals and analyzing together what’s needed, what’s available and who cancontribute what. The result is a joint strategy and xx regional action plans.2.Agile development of missing solutions such a Circular Building Trust Framework, Regional Circular Deals, connecting digitalplatforms matching supply and demand3.Increasing institutional capacity in (de-)construction, renovation, development and regulation: trained professionals move thetransition forward.Circular Trust Building will demonstrate these in xx pilots with local stakeholders. Each pilot will at least realize a 25% reduction of thematerial footprint of construction and renovation
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes.The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool [Zuyd]), “Making Industry Sustainable” (Hogeschool Rotterdam [HRotterdam]), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht [HUtrecht]) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab [ILab]).The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives.The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science [UASs] and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional governments/network organizations that will facilitate research, demand articulation and professionalization of students and professionals.