Autonomous learning behavior is an important skill for students, but they often do not master it sufficiently. We investigated the potential of nudging as a teaching strategy in tertiary education to support three important autonomous learning behaviors: planning, preparing for class, and asking questions. Nudging is a strategy originating from behavioral economics used to influence behavior by changing the environment, and consists of altering the choice environment to steer human behavior. In this study, three nudges were designed by researchers in co-creation with teachers. A video booth to support planning behavior (n = 95), a checklist to support class preparation (n = 148), and a goal-setting nudge to encourage students to ask questions during class (n = 162) were tested in three field experiments in teachers’ classrooms with students in tertiary education in the Netherlands. A mixed-effects model approach revealed a positive effect of the goal-setting nudge on students’ grades and a marginal positive effect on the number of questions asked by students. Additionally, evidence for increased self-reported planning behavior was found in the video booth group—but no increase in deadlines met. No significant effects were found for the checklist. We conclude that, for some autonomous learning behaviors, primarily asking questions, nudging has potential as an easy, effective teaching strategy.
MULTIFILE
Introduction Physical activity levels of children with disabilities are low, as these children and their parents face a wide variety of both personal and environmental barriers. Behavior change techniques support pediatric physical therapists to address these barriers together with parents and children. We developed the What Moves You?! intervention Toolkit (WMY Toolkit) filled with behavioral change tools for use in pediatric physical therapy practice. Objective To evaluate the feasibility of using the WMY Toolkit in daily pediatric physical therapy practice. Methods We conducted a feasibility study with a qualitative approach using semi-structured interviews with pediatric physical therapists (n = 11). After one day of training, the pediatric physical therapists used the WMY Toolkit for a period of 9 weeks, when facilitating physical activity in children with disabilities. We analyzed the transcripts using an inductive thematic analysis followed by a deductive analysis using a feasibility framework. Results For acceptability, pediatric physical therapists found that the toolkit facilitated conversation about physical activity in a creative and playful manner. The working mechanisms identified were in line with the intended working mechanisms during development of the WMY Toolkit, such as focusing on problem solving, self-efficacy and independence. For demand, the pediatric physical therapists mentioned that they were able to use the WMY Toolkit in children with and without disabilities with a broad range of physical activity goals. For implementation, education is important as pediatric physical therapists expressed the need to have sufficient knowledge and to feel confident using the toolkit. For practicality, pediatric physical therapists were positive about the ease of which tools could be adapted for individual children. Some of the design and materials of the toolkit needed attention due to fragility and hygiene. Conclusion The WMY Toolkit is a promising and innovative way to integrate behavior change techniques into pediatric physical therapy practice.
LINK
The HRM study program of The Hague University of Applied Sciences (THUAS) recently replaced classical, module-based education by so-called learning landscapes in which students approach complex problems by interdisciplinary learning activities. Teachers collaborate in multi-disciplinary teams that have a shared responsibility to support students as well as to innovate their education. This new way of organizing educational processes not only need to strengthen the learning ability and flexibility of students, but also the learning and innovation ability of teachers. Our exploratory research among teachers showed that this new way of working increased their job satisfaction. However, teachers experience difficulties in implementing their ideas, which is an important precondition for sustainable educational innovation. In our research we addressed the question whether the new working context of teachers supported innovation. The organizational structure as described in this case study is characterized by a high degree of autonomy for the teachers who collaborate in multidisciplinary teams, in which the management rewards innovative behaviour and facilitates where possible. Given the fact that this context incorporates a high number of elements that are known to facilitate innovation, the assumption was that teachers would experience that this context was supporting them to innovate. We evaluated whether this was indeed the case in their educational innovation. Our research shows that in general teachers positively evaluate the new working context. They experience the renewal process to contribute to their job satisfaction and feel supported by the management. A large majority of the teachers, partly as a result of this new working context, do have many ideas to renew the education. Even though they use multiple sources to generate ideas, they are mainly inspired by the needs of students and the occupational practice. Especially by sharing their ideas with others, they enrich their ideas. For the implementation of their ideas they specifically focus on creating buy-in, mentioned in two-thirds of the storyboards, with activities such as seeking allies, communicating the idea to others and ‘drinking lots of coffee’. In addition, experiments help to make their ideas more visible.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Movebite aims to combat the issue of sedentary behavior prevalent among office workers. A recent report of the Nederlandse Sportraad reveal a concerning trend of increased sitting time among Dutch employees, leading to a myriad of musculoskeletal discomforts and significant health costs for employers due to increased sick leave. Recognizing the critical importance of addressing prolonged sitting in the workplace, Movebite has developed an innovative concept leveraging cutting-edge technology to provide a solution. The Movebite app seamlessly integrates into workplace platforms such as Microsoft Teams and Slack, offering a user-friendly interface to incorporate movement into their daily routines. Through scalable AI coaching and real-time movement feedback, Movebite assists individuals in scheduling and implementing active micro-breaks throughout the workday, thereby mitigating the adverse effects of sedentary behavior. In collaboration with the Avans research group Equal Chance on Healthy Choices, Movebite conducts user-centered testing to refine its offerings and ensure maximum efficacy. This includes testing initiatives at sports events, where the diverse crowd provides invaluable feedback to fine-tune the app's features and user experience. The testing process encompasses both quantitative and qualitative approaches based on the Health Belief Model. Through digital questionnaires, Movebite aims to gauge users' perceptions of sitting as a health threat and the potential benefits of using the app to alleviate associated risks. Additionally, semi-structured interviews delve deeper into user experiences, providing qualitative insights into the app's usability, look, and feel. By this, Movebite aims to not only understand the factors influencing adoption but also to tailor its interventions effectively. Ultimately, the goal is to create an environment encouraging individuals to embrace physical activity in small, manageable increments, thereby fostering long-term engagement promoting overall well-being.Through continuous innovation and collaboration with research partners, Movebite remains committed to empowering individuals to lead healthier, more active lifestyles, one micro-break at a time.
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.