We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
An investigation in the learning effects of integrated development projects. In two subsequent semesters the students were asked how they rated their competencies at the start of the project as well as at the end of it. The students voluntarily filled out a questionnaire. After the last questionnaire a number of students were also interviewed in order to learn more about their perceptions. It was a remarkable outcome of these interviews that a lot of students tended to give themselves lower ratings in the end if they met any difficulties in for instance communication or co-operation during the project. Then the questionnaire showed a decrease in the student's ratings, while anyone else would say the student did learn something after recognizing these difficulties. It required a different interpretation of the outcomes of the questionnaires. The investigation showed that co-operating in general and in multidisciplinary teams in particular, co-operating with companies and also working according to plans are the four objectives that are recognized mostly by the students. The factors that actually contribute to, or block, the learning effects remained unknown yet.
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the socalled: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to successfactors and do’s and don’ts for future projects with international collaboration.
Developing and testing several AR and VR concepts for SAMSUNG (Benelux) Samsung and Breda University of Applied Sciences decided to work together on developing and testing several new digital media concepts with a focus on VR and gaming. This collaboration has led to several innovative projects and concepts, among others: the organisation of the first Samsung VR jam in which game and media students developed new concepts for SAMSUNG GEAR in 24 hours, the pre-development of a VR therapy concept (Fear of Love) created by CaptainVR, the Samsung Industry Case in which students developed new concepts for SAMSUNG GEAR (wearables), the IGAD VR game pitch where over 15 VR game concepts were created for SAMSUNG VR GEAR and numerous projects in which VR concepts are developed and created using new SAMSUNG technologies. Currently we are co-developing new digital HRM solutions.
Aeres University of Applied Sciences has placed internationalisation as a key driver in its overall strategy. By prioritising the internationalisation of education and educational consultancy the university has created solid opportunities for students, lecturers, and partners at regional, national, and international levels. Currently, more strategic development on internationalisation in applied research at Aeres is needed. There is an opportunity to utilise highly proficient researchers, state-of-the-art facilities, and an impressive national research portfolio, and for this, there is a need to develop international research agenda, a key priority for AeresResearch4EU. To address this need, Aeres University of Applied Sciences aims to strengthen its internationalisation efforts with its research activities, opening the door to many opportunities, and most importantly, creating an international research agenda spanning the university's three locations. The main objectives of AeresResearch4EU are to analyse the existing research strategy and professorships and develop them towards a global research agenda for the European Union. By focusing on international research projects, Aeres can further enhance its reputation as a leading institution for applied research in agriculture, food, environment, and green technologies. AeresResearch4EU aims to create new partnerships and collaborations with researchers and institutions across Europe, allowing Aeres to contribute to developing innovative and sustainable solutions to global challenges. With its strong commitment to internationalisation and its focus on applied research, Aeres University of Applied Sciences is poised to become an essential player in the European research landscape.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.