Background—Self-management interventions are widely implemented in care for patients with heart failure (HF). Trials however show inconsistent results and whether specific patient groups respond differently is unknown. This individual patient data meta-analysis assessed the effectiveness of self-management interventions in HF patients and whether subgroups of patients respond differently. Methods and Results—Systematic literature search identified randomized trials of selfmanagement interventions. Data of twenty studies, representing 5624 patients, were included and analyzed using mixed effects models and Cox proportional-hazard models including interaction terms. Self-management interventions reduced risk of time to the combined endpoint HF-related all-0.71- in Conclusions—This study shows that self-management interventions had a beneficial effect on time to HF-related hospitalization or all-cause death, HF-related hospitalization alone, and elicited a small increase in HF-related quality of life. The findings do not endorse limiting selfmanagement interventions to subgroups of HF patients, but increased mortality in depressed patients warrants caution in applying self-management strategies in these patients.
Background: Many international clinical guidelines recommend therapeutic exercise as a core treatment for knee and hip osteoarthritis. We aimed to identify individual patient-level moderators of the effect of therapeutic exercise for reducing pain and improving physical function in people with knee osteoarthritis, hip osteoarthritis, or both. Methods: We did a systematic review and individual participant data (IPD) meta-analysis of randomised controlled trials comparing therapeutic exercise with non-exercise controls in people with knee osteoathritis, hip osteoarthritis, or both. We searched ten databases from March 1, 2012, to Feb 25, 2019, for randomised controlled trials comparing the effects of exercise with non-exercise or other exercise controls on pain and physical function outcomes among people with knee osteoarthritis, hip osteoarthritis, or both. IPD were requested from leads of all eligible randomised controlled trials. 12 potential moderators of interest were explored to ascertain whether they were associated with short-term (12 weeks), medium-term (6 months), and long-term (12 months) effects of exercise on self-reported pain and physical function, in comparison with non-exercise controls. Overall intervention effects were also summarised. This study is prospectively registered on PROSPERO (CRD42017054049). Findings: Of 91 eligible randomised controlled trials that compared exercise with non-exercise controls, IPD from 31 randomised controlled trials (n=4241 participants) were included in the meta-analysis. Randomised controlled trials included participants with knee osteoarthritis (18 [58%] of 31 trials), hip osteoarthritis (six [19%]), or both (seven [23%]) and tested heterogeneous exercise interventions versus heterogeneous non-exercise controls, with variable risk of bias. Summary meta-analysis results showed that, on average, compared with non-exercise controls, therapeutic exercise reduced pain on a standardised 0–100 scale (with 100 corresponding to worst pain), with a difference of –6·36 points (95% CI –8·45 to –4·27, borrowing of strength [BoS] 10·3%, between-study variance [τ2] 21·6) in the short term, –3·77 points (–5·97 to –1·57, BoS 30·0%, τ2 14·4) in the medium term, and –3·43 points (–5·18 to –1·69, BoS 31·7%, τ2 4·5) in the long term. Therapeutic exercise also improved physical function on a standardised 0–100 scale (with 100 corresponding to worst physical function), with a difference of –4·46 points in the short term (95% CI –5·95 to –2·98, BoS 10·5%, τ2 10·1), –2·71 points in the medium term (–4·63 to –0·78, BoS 33·6%, τ2 11·9), and –3·39 points in the long term (–4·97 to –1·81, BoS 34·1%, τ2 6·4). Baseline pain and physical function moderated the effect of exercise on pain and physical function outcomes. Those with higher self-reported pain and physical function scores at baseline (ie, poorer physical function) generally benefited more than those with lower self-reported pain and physical function scores at baseline, with the evidence most certain in the short term (12 weeks). Interpretation: There was evidence of a small, positive overall effect of therapeutic exercise on pain and physical function compared with non-exercise controls. However, this effect is of questionable clinical importance, particularly in the medium and long term. As individuals with higher pain severity and poorer physical function at baseline benefited more than those with lower pain severity and better physical function at baseline, targeting individuals with higher levels of osteoarthritis-related pain and disability for therapeutic exercise might be of merit. Funding: Chartered Society of Physiotherapy Charitable Trust and the National Institute for Health and Care Research.
OBJECTIVES: To describe the types and prevalence of chronic conditions in an ICU population and a population-based control group during the year before ICU admission and to quantify the risk of developing new chronic conditions in ICU patients compared with the control group.DESIGN: We conducted a retrospective cohort study, combining a national health insurance claims database and a national quality registry for ICUs. Claims data in the timeframe 2012-2014 were combined with clinical data of patients who had been admitted to an ICU during 2013. To assess the differences in risk of developing new chronic conditions, ICU patients were compared with a population-based control group using logistic regression modeling.SETTING: Eighty-one Dutch ICUs.PATIENTS: All patients admitted to an ICU during 2013. A population-based control group was created, and weighted on the age, gender, and socio-economic status of the ICU population.INTERVENTIONS: None.MEASUREMENTS AND MAIN RESULTS: ICU patients (n = 56,760) have more chronic conditions compared with the control group (n = 75,232) during the year before ICU admission (p < 0.0001). After case-mix adjustment ICU patients had a higher risk of developing chronic conditions, with odds ratios ranging from 1.67 (CI, 1.29-2.17) for asthma to 24.35 (CI, 14.00-42.34) for epilepsy, compared with the control group.CONCLUSIONS: Due to the high prevalence of chronic conditions and the increased risk of developing new chronic conditions, ICU follow-up care is advised and may focus on the identification and treatment of the new developed chronic conditions.