A goal of K-12 science education is for learners to develop scientificliteracy. However, realizing this goal is being complicated by the availability ofabundant resources that vary strongly regarding their adherence to the Nature ofScience principles, particularly regarding socio-scientific issues, such as, forinstance, vaccination. It requires dedicated reasoning skills, often referred to ascritical thinking, to assess and value the arguments regarding such issues.To stimulate critical thinking, we investigate the use of interactive conceptcartoons. Instead of a single cartoon our instrument provides a sequence ofconcept cartoons. The cartoons are alternated with a diagram and concepts thatlearners have to place in the diagram, leading to a systems’ view on the subjectmatter.The instrument has been presented to teachers for expert review and evaluatedin three classrooms (6th grade) of one school (70 learners). In this paper, wepresent the interactive concept cartoon instrument and report on the study. Theresults indicate that learners are engaged when working with the instrument andlearn relevant knowledge regarding the subject matter and the Nature of Science.
DOCUMENT
A goal of science education is for students to develop scientific literacy. Scientific literacy involves the acquisition of factual scientific knowledge and the ability to assess the credibility of scientific assertation. Furthermore, students should be able to include ethical considerations. Realising this goal is complicated because it requires the development of argumentation skills, content knowledge, and an understanding of Nature of Science. Teachers struggle to apply effective strategies in the classroom. Few studies have shed light on usable, effective strategies. Therefore, the research goal is to identify features that encourage students to explore socio-scientific issues. To stimulate the development of scientific literary and support teachers, a web-based educational instrument was designed. In this study, the effects and influences of its features in the context of socio-scientific issues are investigated. The instrument provides a sequence of concept cartoons alternated with an interactive diagram. The instrument is deployed in 14 classrooms in both primary and secondary schools. In this paper, we present the educational instrument and report on its practical implementation and its constituent features. The results indicate that students show active involvement during their interaction with the instrument and reveal both the merits and challenges regarding the various features.
DOCUMENT
Computers are promising tools for providing educational experiences that meet individual learning needs. However, delivering this promise in practice is challenging, particularly when automated feedback is essential and the learning extends beyond using traditional methods such as writing and solving mathematics problems. We hypothesize that interactive knowledge representations can be deployed to address this challenge. Knowledge representations differ markedly from concept maps. Where the latter uses nodes (concepts) and arcs (links between concepts), a knowledge representation is based on an ontology that facilitates automated reasoning. By adjusting this reasoning towards interacting with learners for the benefit of learning, a new class of educational instruments emerges. In this contribution, we present three projects that use an interactive knowledge representation as their foundation. DynaLearn supports learners in acquiring system thinking skills. Minds-On helps learners to deepen their understanding of phenomena while performing experiments. Interactive Concept Cartoons engage learners in a science-based discussion about controversial topics. Each of these approaches has been developed iteratively in collaboration with teachers and tested in real classrooms, resulting in a suite of lessons available online. Evaluation studies involving pre-/post-tests and action-log data show that learners are easily capable of working with these educational instruments and that the instruments thus enable a semi-automated approach to constructive learning.
DOCUMENT