BackgroundPatients undergoing total knee arthroplasty (TKA) often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements should be used. This study aimed to determine the inter- and intrarater reliability of hand-held dynamometry (HHD) in measuring isometric knee strength in patients awaiting TKA.MethodsTo determine interrater reliability, 32 patients (81.3% female) were assessed by two examiners. Patients were assessed consecutively by both examiners on the same individual test dates. To determine intrarater reliability, a subgroup (n = 13) was again assessed by the examiners within four weeks of the initial testing procedure. Maximal isometric knee flexor and extensor strength were tested using a modified Citec hand-held dynamometer. Both the affected and unaffected knee were tested. Reliability was assessed using the Intraclass Correlation Coefficient (ICC). In addition, the Standard Error of Measurement (SEM) and the Smallest Detectable Difference (SDD) were used to determine reliability.ResultsIn both the affected and unaffected knee, the inter- and intrarater reliability were good for knee flexors (ICC range 0.76-0.94) and excellent for knee extensors (ICC range 0.92-0.97). However, measurement error was high, displaying SDD ranges between 21.7% and 36.2% for interrater reliability and between 19.0% and 57.5% for intrarater reliability. Overall, measurement error was higher for the knee flexors than for the knee extensors.ConclusionsModified HHD appears to be a reliable strength measure, producing good to excellent ICC values for both inter- and intrarater reliability in a group of TKA patients. High SEM and SDD values, however, indicate high measurement error for individual measures. This study demonstrates that a modified HHD is appropriate to evaluate knee strength changes in TKA patient groups. However, it also demonstrates that modified HHD is not suitable to measure individual strength changes. The use of modified HHD is, therefore, not advised for use in a clinical setting.
MULTIFILE
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE
: Knee injuries commonly occur in later stages of competition indicating that fatigue may influence dynamic knee stability. Force sense (FS) is a submodality of proprioception influenced by muscle mechanoreceptors, and, if negatively affected by fatigue, may results in less effective neuromuscular control. OBJECTIVES: To determine the effects of peripheral fatigue on FS of the quadriceps and hamstrings. DESIGN: Quasi-experimental study design. PARTICIPANTS: Twenty healthy and physically active females and males (age: 23.4±2.7 years, mass: 69.5±10.9kg, height: 169.7±9.4cm) participated. INTERVENTIONS: Fatigue was induced during a protocol with two sets of 40 repetitions, and the last set truncated at 90 repetitions or stopped if torque production dropped below 25% of peak torque. MAIN OUTCOME MEASURES: FS of the hamstrings and quadriceps was tested on separate days before and after three sets of isokinetic knee flexion and extension to fatigue by examining the ability to produce a target isometric torque (15% MVIC) with and without visual feedback (FS Error). Electromyographic data of the tested musculature were collected in order to calculate and determine median frequency shift. T-tests and Wilcoxon Signed Rank tests were conducted to examine pre-fatigue and post-fatigue FS Error for flexion and extension. RESULTS: Despite verification of fatigue via torque production decrement and shift in median frequency, no significant differences were observed in FS Error for either knee flexion (pre=0.54±2.28 N·m; post=0.47±1.62 N·m) or extension (pre=-0.28±2.69 N·m; post=-0.21±1.78 N·m) pre-fatigue compared to the post-fatigue condition. CONCLUSIONS: Although previous research has demonstrated that peripheral fatigue negatively affects TTDPM, it did not affect FS as measured in this study. The peripheral fatigue protocol may have a greater effect on the mechanoreceptors responsible for TTDPM than those responsible for FS. Further investigation into the effects of fatigue across various modes of proprioception is warranted.
DOCUMENT
Background: Hip and knee osteoarthritis (OA) are highly prevalent worldwide. The guidelines recommend physical activity and education as the core treatments for osteoarthritis. Digital health has the potential to engage people in physical activity and disease management. Therefore, we conducted a pilot trial to assess the usability and preliminary effectiveness of an app-based physical activity and education program (Join2Move) compared to usual care for people with hip and/or knee OA in Germany. Methods: A randomized controlled pilot study was conducted. Individuals with diagnosed or self-reported knee and hip OA were included. Allocation to the intervention or control group was randomized. The intervention group received the Join2Move program. The Join2Move program was previously developed as a website and evaluated in the Netherlands. For the current study, the program was translated and adapted to the German context and adjusted from a website to an app. The control group received usual care. The primary outcomes were usability and preliminary effectiveness (pain and physical functioning). Measurements were taken at baseline and at twelve weeks. The data analysis was performed using SPSS (IBM SPSS Statistics 29.0). Results: Sixty participants, with a mean age of 61.9 (SD ± 7.2) years, were allocated to the intervention (n = 32) or the control group (n = 28) and included in the analysis. The majority of participants had knee OA (68%), and 12% had hip and knee OA. The dropout rate was n = 11 (18%). No adverse events were reported. Usability was rated as acceptable (mean System Usability Scale = 71.3/100) with a wide range (32.5 to 100). Statistically significant between-group differences were found only for pain (mean difference 8.52 (95% CI 1.01 to 16.04), p = 0.027). Conclusions: Join2Move demonstrated acceptable usability. The preliminary results of the pilot trial indicate the potential of a stand-alone app for the treatment of patients with hip or knee OA. However, the acceptable usability of Join2Move limits its recommendation for everyone. There appears to be room for improvement in app usability and in identifying patients for whom the app is suitable and the right time to use a stand-alone app.
LINK
Background: Currently, the Ponseti method is the gold standard for treatment of clubfeet. For long-term func- tional evaluation of this method, gait analysis can be performed. Previous studies have assessed gait differences between Ponseti treated clubfeet and healthy controls. Research question/purpose: The aims of this systematic review were to compare the gait kinetics of Ponseti treated clubfeet with healthy controls and to compare the gait kinetics between clubfoot patients treated with the Ponseti method or surgically. Methods: A systematic search was performed in Embase, Medline Ovid, Web of Science, Scopus, Cochrane, Cinahl ebsco, and Google scholar, for studies reporting on gait kinetics in children with clubfeet treated with the Ponseti method. Studies were excluded if they only used EMG or pedobarography. Data were extracted and a risk of bias was assessed. Meta-analyses and qualitative analyses were performed. Results: Nine studies were included, of which five were included in the meta-analyses. The meta-analyses showed that ankle plantarflexor moment (95% CI -0.25 to -0.19) and ankle power (95% CI -0.89 to -0.60, were significantly lower in the Ponseti treated clubfeet compared to the healthy controls. No significant difference was found in ankle dorsiflexor and plantarflexor moment, and ankle power between clubfeet treated with surgery compared to the Ponseti method. Significance: Differences in gait kinetics are present when comparing Ponseti treated clubfeet with healthy controls. However, there is no significant difference between surgically and Ponseti treated clubfeet. These results give more insight in the possibilities of improving the gait pattern of patients treated for clubfeet.
DOCUMENT
Background To gain insight into the role of plantar intrinsic foot muscles in fall-related gait parameters in older adults, it is fundamental to assess foot muscles separately. Ultrasonography is considered a promising instrument to quantify the strength capacity of individual muscles by assessing their morphology. The main goal of this study was to investigate the intra-assessor reliability and measurement error for ultrasound measures for the morphology of selected foot muscles and the plantar fascia in older adults using a tablet-based device. The secondary aim was to compare the measurement error between older and younger adults and between two different ultrasound machines. Methods Ultrasound images of selected foot muscles and the plantar fascia were collected in younger and older adults by a single operator, intensively trained in scanning the foot muscles, on two occasions, 1–8 days apart, using a tablet-based and a mainframe system. The intra-assessor reliability and standard error of measurement for the cross-sectional area and/or thickness were assessed by analysis of variance. The error variance was statistically compared across age groups and machines. Results Eighteen physically active older adults (mean age 73.8 (SD: 4.9) years) and ten younger adults (mean age 21.9 (SD: 1.8) years) participated in the study. In older adults, the standard error of measurement ranged from 2.8 to 11.9%. The ICC ranged from 0.57 to 0.97, but was excellent in most cases. The error variance for six morphology measures was statistically smaller in younger adults, but was small in older adults as well. When different error variances were observed across machines, overall, the tablet-based device showed superior repeatability. Conclusions This intra-assessor reliability study showed that a tablet-based ultrasound machine can be reliably used to assess the morphology of selected foot muscles in older adults, with the exception of plantar fascia thickness. Although the measurement errors were sometimes smaller in younger adults, they seem adequate in older adults to detect group mean hypertrophy as a response to training. A tablet-based ultrasound device seems to be a reliable alternative to a mainframe system. This advocates its use when foot muscle morphology in older adults is of interest.
MULTIFILE
Injuries and lack of motivation are common reasons for discontinuation of running. Real-time feedback from wearables can reduce discontinuation by reducing injury risk and improving performance and motivation. There are however several limitations and challenges with current real-time feedback approaches. We discuss these limitations and challenges and provide a framework to optimise real-time feedback for reducing injury risk and improving performance and motivation. We first discuss the reasons why individuals run and propose that feedback targeted to these reasons can improve motivation and compliance. Secondly, we review the association of running technique and running workload with injuries and performance and we elaborate how real-time feedback on running technique and workload can be applied to reduce injury risk and improve performance and motivation. We also review different feedback modalities and motor learning feedback strategies and their application to real-time feedback. Briefly, the most effective feedback modality and frequency differ between variables and individuals, but a combination of modalities and mixture of real-time and delayed feedback is most effective. Moreover, feedback promoting perceived competence, autonomy and an external focus can improve motivation, learning and performance. Although the focus is on wearables, the challenges and practical applications are also relevant for laboratory-based gait retraining.
DOCUMENT
Purpose. This cross-sectional study investigates deficits and associations in muscle strength, 6-minute walking distance (6MWD), aerobic capacity (VO2peak), and physical activity (PA) in independent ambulatory children with lumbosacral spina bifida. Method. Twenty-tree children participated (13 boys, 10 girls). Mean age (SD): 10.4 (±3.1) years. Muscle strength (manual muscle testing and hand-held dynamometry), 6MWD, VO2peak (maximal exercise test on a treadmill), and PA (quantity and energy expenditure [EE]), were measured and compared with aged-matched reference values. Results. Strength of upper and lower extremity muscles, and VO2peak were significantly lower compared to reference values. Mean Z-scores ranged from -1.2 to -2.9 for muscle strength, and from -1.7 to -4.1 for VO2peak. EE ranged from 73 - 84% of predicted EE. 6MWD was significantly associated with muscle strength of hip abductors and foot dorsal flexors. VO2peak was significantly associated with strength of hip flexors, hip abductors, knee extensors, foot dorsal flexors, and calf muscles. Conclusions. These children have significantly reduced muscle strength, 6MWD, VO2peak and lower levels of PA, compared to reference values. VO2peak and 6MWD were significantly associated with muscle strength, especially with hip abductor and ankle muscles. Therefore, even in independent ambulating children training on endurance and muscle strength seems indicated.
DOCUMENT
Purpose: This study examined the effects of a giant (4×3 m) exercising board game intervention on ambulatory physical activity (PA) and a broader array of physical and psychological outcomes among nursing home residents. Materials and methods: A quasi-experimental longitudinal study was carried out in two comparable nursing homes. Ten participants (aged 82.5±6.3 and comprising 6 women) meeting the inclusion criteria took part in the 1-month intervention in one nursing home, whereas 11 participants (aged 89.9±3.1 with 8 women) were assigned to the control group in the other nursing home. The giant exercising board game required participants to per-form strength, flexibility, balance and endurance activities. The assistance provided by an exercising specialist decreased gradually during the intervention in an autonomy-oriented approach based on the self-determination theory. The following were assessed at baseline, after the intervention and after a follow-up period of 3 months: PA (steps/day and energy expenditure/day with ActiGraph), cognitive status (mini mental state examination), quality of life (EuroQol 5-dimensions), motivation for PA (Behavioral Regulation in Exercise Questionnaire-2), gait and balance (Tinetti and Short Physical Performance Battery), functional mobility (timed up and go), and the muscular isometric strength of the lower limb muscles. Results and conclusion: In the intervention group, PA increased from 2,921 steps/day at baseline to 3,358 steps/day after the intervention (+14.9%, P=0.04) and 4,083 steps/day (+39.8%, P=0.03) after 3 months. Energy expenditure/day also increased after the intervention (+110 kcal/day, +6.3%, P=0.01) and after 3 months (+219 kcal/day, +12.3%, P=0.02). Quality of life (P<0.05), balance and gait (P<0.05), and strength of the ankle (P<0.05) were also improved after 3 months. Such improvements were not observed in the control group. The preliminary results are promising but further investigation is required to confirm and evaluate the long-term effectiveness of PA interventions in nursing homes.
DOCUMENT