This book is the account of teaching practice linked to research projects, a practice that is able to create new, unexpected values in the complex patchwork of the city through experimental and strategic interventions with greenery. That the interventions involve greenery is obviously linked to the fact that the Van Hall Larenstein university of applied sciences specializes in nature and agriculture, but there is also a practical reason. Green spaces act as a cohesive force, as is shown again and again in the Netherlands and in the Lively Cities programme. Particularly in the urban context, green spaces have a distinctive and perhaps even emotional value that encourages people to pause there and makes them think about their appreciation of a place. Greenery triggers people to take part in social experiments. But that is just the beginning.
MULTIFILE
Industrial robot manipulators are widely used for repetitive applications that require high precision, like pick-and-place. In many cases, the movements of industrial robot manipulators are hard-coded or manually defined, and need to be adjusted if the objects being manipulated change position. To increase flexibility, an industrial robot should be able to adjust its configuration in order to grasp objects in variable/unknown positions. This can be achieved by off-the-shelf vision-based solutions, but most require prior knowledge about each object tobe manipulated. To address this issue, this work presents a ROS-based deep reinforcement learning solution to robotic grasping for a Collaborative Robot (Cobot) using a depth camera. The solution uses deep Q-learning to process the color and depth images and generate a greedy policy used to define the robot action. The Q-values are estimated using Convolutional Neural Network (CNN) based on pre-trained models for feature extraction. Experiments were carried out in a simulated environment to compare the performance of four different pre-trained CNNmodels (RexNext, MobileNet, MNASNet and DenseNet). Results showthat the best performance in our application was reached by MobileNet,with an average of 84 % accuracy after training in simulated environment.
There has been a rapidly growing number of studies of the geographical aspects of happiness and well-being. Many of these studies have been highlighting the role of space and place and of individual and spatial contextual determinants of happiness. However, most of the studies to date do not explicitly consider spatial clustering and possible spatial spillover effects of happiness and well-being. The few studies that do consider spatial clustering and spillovers conduct the analysis at a relatively coarse geographical scale of country or region. This article analyses such effects at a much smaller geographical unit: community areas. These are small area level geographies at the intra-urban level. In particular, the article presents a spatial econometric approach to the analysis of life satisfaction data aggregated to 1,215 communities in Canada and examines spatial clustering and spatial spillovers. Communities are suitable given that they form a small geographical reference point for households. We find that communities’ life satisfaction is spatially clustered while regression results show that it is associated to the life satisfaction of neighbouring communities as well as to the latter's average household income and unemployment rate. We consider the role of shared cultural traits and institutions that may explain such spillovers of life satisfaction. The findings highlight the importance of neighbouring characteristics when discussing policies to improve the well-being of a (small area) place.