Numerous laboratory-based studies recorded eye movements in participants with varying expertise when watching video projections in the lab. Although research in the lab offers the advantage of internal validity, reliability and ethical considerations, ecological validity is often questionable. Therefore the current study compared visual search in 13 adult cyclists, when cycling a real bicycle path and while watching a film clip of the same road. Dwell time towards five Areas of Interest (AOIs) is analysed. Dwell time (%) in the lab and real-life was comparable only for the low quality bicycle path. Both in real-life and the lab, gaze is predominantly driven towards the road. Since gaze behaviour in the lab and real-life tends to be comparable with increasing task-complexity (road quality), it is concluded that under certain task constraints laboratory experiments making use of video clips might provide valuable information regarding gaze behaviour in real-life.
DOCUMENT
BackgroundGait analysis has been used for decades to quantify knee function in patients with knee osteoarthritis; however, it is unknown whether and to what extent inter-laboratory differences affect the comparison of gait data between studies. Therefore, the aim of this study was to perform an inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait of patients with knee osteoarthritis.MethodsKnee biomechanics and muscle activation patterns from patients with knee osteoarthritis were analyzed, previously collected at Dalhousie University (DAL: n = 55) and Amsterdam UMC, VU medical center (VUmc: n = 39), using their in-house protocols. Additionally, one healthy male was measured at both locations. Both direct comparisons and after harmonization of components of the protocols were made. Inter-laboratory comparisons were quantified using statistical parametric mapping analysis and discrete gait parameters.ResultsThe inter-laboratory comparison showed offsets in the sagittal plane angles, moments and frontal plane angles, and phase shifts in the muscle activation patterns. Filter characteristics, initial contact identification and thigh anatomical frame definitions were harmonized between the laboratories. After this first step in protocol harmonization, the offsets in knee angles and sagittal plane moments remained, but the inter-laboratory comparison of the muscle activation patterns improved.ConclusionsInter-laboratory differences obstruct valid comparisons of gait datasets from patients with knee osteoarthritis between gait laboratories. A first step in harmonization of gait analysis protocols improved the inter-laboratory comparison. Further protocol harmonization is recommended to enable valid comparisons between labs, data-sharing and multicenter trials to investigate knee function in patients with knee osteoarthritis.
MULTIFILE
Detecting practical problems of persons with dementia (PwD) experience at home, and advising them on solutions to facilitate aging in place are complex and challenging tasks for nurses and case managers. In this two group randomized, controlled laboratory experiment, the efficacy of a decision support application aiming to increase nurses' and case managers' confidence in clinical judgment and decision-making was tested. The participants (N = 67) assessed a case of a PwD within the problem domains: self-reliance, safety and informal care, and provided suggestions for possible solutions. Participants used either their regular procedure with (intervention group) or without the App (control group) to conduct these tasks. No statistically significant difference was found on the primary outcome measure, the overall level of confidence. However, nurses and case managers highly recommended use of the App in practice. To explain these results, more research on the potential added value of the App is needed.
DOCUMENT
The BECEE initiative represents a transformative collaboration between four leading European HEIs—Hanze University of Applied Sciences (HUAS), Zurich University of Applied Sciences (ZHAW), South East Technological University (SETU), and Universiteti "Aleksandër Moisiu" Durrës (UAMD). Our consortium embodies the essence of BECEE and the EIT Knowledge Triangle Model because it also comprises of 4 industry partners (KPN, Eindhoven, The Netherlands, Innofuse, Zurich, Switzerland, Dungarvan Enterprise Centre, South East, Ireland, and Linda Laboratory, Durrës, Albania) bringing together partners from education, research, and business who are equally committed to collaborate on innovation action plans to fostering balanced collaborative entrepreneurship ecosystems in our respective regions. This consortium, therefore, is strategically designed to pool diverse strengths, creating a synergetic force for innovation and entrepreneurship that transcends the capabilities of any single organisation.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
Fungal colorants offer a sustainable alternative to synthetic colors, which are derived from fossil fuels and contribute to environmental pollution. While fungal colorants could be effectively produced through precision fermentation by microorganisms, their adoption in industry remains limited due to challenges in processing, formulation, and application. ColorFun aims to bridge the gap between laboratory research, artisanal practices, and industrial needs by developing a scalable and adaptable colorant processing system. Building on the TUFUCOL project, which focused on optimizing fungal fermentation, ColorFun consortium gears the focus to downstream processing and industrial applications by using green chemistry. Many SMEs have explored fungal colorants using traditional methods, but due to lack of consistency and reproducibility, they are unsuitable for large-scale production. Meanwhile, lab research usually does not translate directly to industrial applications. Researchers can fine-tune processes under controlled conditions while large-scale production requires consistent formulations that work across different material substrates and processing environments. Without bridging these gaps, fungal colorants remain confined to research and small-scale applications rather than becoming viable industrial alternatives. Instead of developing separate solutions for each sector, ColorFun is working towards a set of standardized extraction and stabilization methods for a stable base colorant product. This pre-processed colorant can then be adjusted by different industries to meet their specific needs. This approach ensures both efficiency in production and flexibility in application. Professionals will collaborate in a test-improve-test circle, ColorFun will refine these formulations to ensure they work in real-world conditions. Students will be involved in the project, contributing to curriculum developments in biotechnology, chemistry, and materials science. Combining efforts, ColorFun lowers the barriers aiding fungal colorants to become a mainstream alternative to synthetic feedstocks. By making these colorants scientifically validated, industrially viable, and commercially adaptable, the project helps accelerate the transition to sustainable color solutions and circular economy.