The proceedings contain 24 papers. The special focus in this conference is on Challenging the Future with Lean. The topics include: A Confrontation Between Lean Thinking and Postmetaphysical Philosophy; barriers and Enablers of Lean Industry 4.0; how Organizations Can Harness Continuous Improvement Practices to Develop Their Data Analytic Capability: A Conceptual Paper; Introducing DACAR: A Process Mapping Tool to Uncover Robotization Implications in Manufacturing; toward 1+1 = 3 with Lean Robotics: The Introduction of a Human-Centered Robotization Method; digital Tools Supporting Lean Program in a Multinational Enterprise; lean Planning & Control in a High-Variety/Low-Volume Environment; sustainability Struggles: Investigating the Interactions of Lean Practices and Barriers to Environmental Performance in Manufacturing; Investigating the Relationship Among Lean Manufacturing Practices to Improved Eco-Efficiency Performance: A Fuzzy DEMATEL Analysis; The Contribution of SMED to the Sustainability of Organizations; hoshin Kanri for Social Enterprises - Co-visualizing Values-Based Strategic Plans; integration of a Robot Solution in a Manufacturing Environment: A Serious Gaming Approach; using Games and Simulations to Facilitate Generative Conflict; the Influence of Learning Styles on the Perception of Lean Implementation Effectiveness by Employees; current State of Practice in Developing Lean Six Sigma Training and Certification Programs -an Irish Perspective; improving the Success Rate of Lean-Themed Internships; serious Games as a Lean Construction Teaching Method - A Conceptual Framework; The Impact of SMED on Productivity and Safety; a Systematic Literature Review on the Use of Lean Methodologies in Enterprise Sales Processes; the First Chapter of a Regional Deployment of a Continuous Improvement Program in a Medical Device Company.
LINK
This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included selected case studies that have been found to implement lean work organization and industrialized product technology in an experimental setting. Adjustments to the work organization and construction technology have been implemented on site. The effects of the adjustments have been measured and were reviewed with operatives and managers. The data have been collected and analyzed, in comparison to traditional settings. Two projects were studied. The first case implied am application of lean work organization in which labor was reorganized redistributing and balancing operations among operatives of different trades. In the second case industrialized solution for prefabricated installation of prefabricated roofs. In both cases the labor productivity increased substantially compared to traditional situations. Although the limited number of cases, both situations appeared to be representative for other housing projects. This has led to conclusions extrapolated from both cases applicable to other projects, and contribution to the knowledge to improve production in construction. Vrijhoef, R. (2016). “Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects.” In: Proc. 24 th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.2 pp. 63–72. Available at: .
MULTIFILE
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.
The growing energy demand and environmental impact of traditional sources highlight the need for sustainable solutions. Hydrogen produced through water electrolysis, is a flexible and clean energy carrier capable of addressing large-electricity storage needs of the renewable but intermittent energy sources. Among various technologies, Proton Exchange Membrane Water Electrolysis (PEMWE) stands out for its efficiency and rapid response, making it ideal for grid stabilization. In its core, PEMWEs are composed of membrane electrode assemblies (MEA), which consist of a proton-conducting membrane sandwiched between two catalyst-coated electrodes, forming a single PEMWE cell unit. Despite the high efficiency and low emissions, a principal drawback of PEMWE is the capital cost due to high loading of precious metal catalysts and protective coatings. Traditional MEA catalyst coating methods are complex, inefficient, and costly to scale. To circumvent these challenges, VSParticle developed a technology for nanoparticle film production using spark ablation, which generates nanoparticles through high-voltage discharges between electrodes followed by an impaction printing module. However, the absence of liquids poses challenges, such as integrating polymeric solutions (e.g., Nafion®) for uniform, thicker catalyst coatings. Electrohydrodynamic atomization (EHDA) stands out as a promising technique thanks to its strong electric fields used to generate micro- and nanometric droplets with a narrow size distribution. Co-axial EHDA, a variation of this technique, utilizes two concentric needles to spray different fluids simultaneously.The ESPRESSO-NANO project combines co-axial EHDA with spark ablation to improve catalyst uniformity and performance at the nanometer scale by integrating electrosprayed ionomer nanoparticles with dry metal nanoparticles, ensuring better distribution of the catalyst within the nanoporous layer. This novel approach streamlines numerous steps in traditional synthesis and electrocatalyst film production which will address material waste and energy consumption, while simultaneously improve the electrochemical efficiency of PEMWEs, offering a sustainable solution to the global energy crisis.