Project Mario Lectoraat Mechatronica
MULTIFILE
The decomposition of a body is influenced by burial conditions, making it crucial to understand the impact of different conditions for accurate grave detection. Geophysical techniques using drones have gained popularity in locating clandestine graves, offering non-invasive methods for detecting surface and subsurface irregularities. Ground-penetrating radar (GPR) is an effective technology for identifying potential grave locations without disturbance. This research aimed to prototype a drone system integrating GPR to assist in grave localization and to develop software for data management. Initial experiments compared GPR with other technologies, demonstrating its valuable applicability. It is suitable for various decomposition stages and soil types, although certain soil compositions have limitations. The research used the DJI M600 Pro drone and a drone-based GPR system enhanced by the real-time kinematic (RTK) global positioning system (GPS) for precision and autonomy. Tests with simulated graves and cadavers validated the system’s performance, evaluating optimal altitude, speed, and obstacle avoidance techniques. Furthermore, global and local planning algorithms ensured efficient and obstacle-free flight paths. The results highlighted the potential of the drone-based GPR system in locating clandestine graves while minimizing disturbance, contributing to the development of effective tools for forensic investigations and crime scene analysis.
MULTIFILE
Mondkapjes, of mondmaskers, zijn door de SARS-COV-2 pandemie niet meer uit het straatbeeld weg te denken. De kwaliteit en comfort van de pasvorm van medische en niet-medische mondmaskers wordt bepaald door hoe goed het mondmasker overeenkomt met de afmetingen van het gezicht van de drager. Echter is er geen goed overzicht van de antropometrie van het gelaat van de Nederlandse bevolking waardoor de pasvorm van mondmaskers nu vaak niet optimaal is. Er is dus vraag naar een laagdrempelige en veilige manier om gezichtskenmerken in kaart te brengen en betere ontwerprichtlijnen voor mondkapjes. Driedimensionaal (3D) scannen doormiddel van Light Detection and Ranging (LiDaR) technologie in combinatie met slimme algoritmes lijkt wellicht een manier om gezichtskenmerken snel en laagdrempelig vast te leggen bij grote groepen mensen. Daarnaast geeft het 3D scannen van gezichten de mogelijkheid om niet enkel de afmetingen van gezichten te meten, maar ook 3D pasvisualisaties uit te voeren. Hoewel 3D scannen geen nieuwe technologie is, is de LiDaR technologie pas sinds 2020 geïntegreerd in de Ipad en Iphone waardoor het toegankelijk gemaakt is voor consumenten. Doormiddel van een research through design benadering zal onderzocht worden of deze technologie gebruikt kan worden om betrouwbare en valide opnames te maken van gezichten en of er op basis hiervan ontwerprichtlijnen ontwikkeld kunnen worden. In dit KIEM GoCi-project zal daarnaast ingezet worden om een kennisbasis en netwerk op te bouwen voor een vervolg aanvraag over de inzet van 3D technologieën in de mode-industrie.
Creating and testing the first Brand Segmentation Model in Augmented Reality using Microsoft Hololens. Sanoma together with SAMR launched an online brand segmentation tool based on large scale research, The brand model uses several brand values divided over three axes. However they cannot be displayed clearly in a 2D model. The space of BSR Quality Planner can be seen as a 3-dimensional meaningful space that is defined by the terms used to typify the brands. The third axis concerns a behaviour-based dimension: from ‘quirky behaviour’ to ‘standardadjusted behaviour’ (respectful, tolerant, solidarity). ‘Virtual/augmented reality’ does make it possible to clearly display (and experience) 3D. The Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences has created the BSR Quality Planner in Virtual Reality – as a hologram. It’s the world’s first segmentation model in AR. Breda University of Applied Sciences (professorship Digital Media Concepts) has deployed hologram technology in order to use and demonstrate the planning tool in 3D. The Microsoft HoloLens can be used to experience the model in 3D while the user still sees the actual surroundings (unlike VR, with AR the space in which the user is active remains visible). The HoloLens is wireless, so the user can easily walk around the hologram. The device is operated using finger gestures, eye movements or voice commands. On a computer screen, other people who are present can watch along with the user. Research showed the added value of the AR model.Partners:Sanoma MediaMarketResponse (SAMR)
In de automotive sector vindt veel onderzoek en ontwikkeling plaats op het gebied van autonome voertuigtechnologie. Dit resulteert in rijke open source software oplossingen voor besturing van robotvoertuigen. HAN heeft met haar Streetdrone voertuig reeds goede praktijkervaring met dergelijke software. Deze oplossingen richten zich op een Operational Design Domain dat uitgaat van de publieke verkeersinfrastructuur met daarbij de weggebruikers rondom het robotvoertuig. In de sectoren agrifood en smart industry is een groeiende behoefte aan automatisering van mobiele machinerie, versterkt door de actuele coronacrisis. Veel functionaliteit van bovengenoemde automotive software is inzetbaar voor mobiele robotica in deze sectoren. De toepassingen zijn enerzijds minder veeleisend - denk aan de meer gestructureerde omgeving, lagere snelheden en minder of geen ‘overige weggebruikers’ – en anderzijds heel specifiek als het gaat over routeplanning en (indoor) lokalisatie. Vanwege dit specifiek karakter is de bestaande software niet direct inzetbaar in deze sectoren. Het MKB in deze sectoren ervaart daarom een grote uitdaging om dergelijke complexe autonome functionaliteit beschikbaar te maken, zonder dat men kan voorbouwen een open, sectorspecifieke softwareoplossing. In Automotion willen de aangesloten partners vanuit bestaande kennis en ervaring tot een eerste integratie en demonstratie komen van een beschikbare automotive open source softwarebibliotheek, aangepast en specifiek ingezet op rijdende robots voor agrifood en smart industry, met focus ‘pickup and delivery’ scenario’s. Hierbij worden de aanpassingen - nieuwe en herschreven ‘boeken’ in de ‘bibliotheek’ - weer in open source gepubliceerd ter versterking van het MKB en het onderwijs. Parallel hieraan willen de partners ontdekken welke praktijkvragen uit dit proces voortvloeien en welke onderliggende kennislacunes in de toekomst moeten worden ingevuld. Via open workshops met uitnodigingen in diverse netwerken worden vele partijen uitgenodigd om gezamenlijk aan de hand van de opgedane ervaringen van gedachten te wisselen over actuele kennisvragen en mogelijke gezamenlijke toekomstige beantwoording daarvan.