In November 2021, the Lecturer Position at Institutes (L.INT) professorship was established by Saxion and Medical Spectrum Twente and as partners physiotherapy practice Pro-F and the Thoracic Centre Twente, with Sandra van Hogen-Koster as a professor. With this, the first Dutch professorship that focuses on the ideas of Positive Health has been launched.
MULTIFILE
PURPOSE: The aim of this study was to determine changes in physical activity, nutrition, sleep behaviour and body composition in wheelchair users with a chronic disability after 12 weeks of using the WHEELS mHealth application (app).METHODS: A 12-week pre-post intervention study was performed, starting with a 1-week control period. Physical activity and sleep behaviour were continuously measured with a Fitbit charge 3. Self-reported nutritional intake, body mass and waist circumference were collected. Pre-post outcomes were compared with a paired-sample t-test or Wilcoxon signed-rank test. Fitbit data were analysed with a mixed model or a panel linear model. Effect sizes were determined and significance was accepted at p < .05. RESULTS: Thirty participants completed the study. No significant changes in physical activity (+1.5 √steps) and sleep quality (-9.7 sleep minutes; -1.2% sleep efficiency) were found. Significant reduction in energy (-1022 kJ, d = 0.71), protein (-8.3 g, d = 0.61) and fat (-13.1 g, d = 0.87) intake, body mass (-2.2 kg, d = 0.61) and waist circumference (-3.3 cm, d = 0.80) were found. CONCLUSION: Positive changes were found in nutritional behaviour and body composition, but not in physical activity and sleep quality. The WHEELS app seems to partly support healthy lifestyle behaviour.Implications for RehabilitationHealthy lifestyle promotion is crucial, especially for wheelchair users as they tend to show poorer lifestyle behaviour despite an increased risk of obesity and comorbidity.The WHEELS lifestyle app seems to be a valuable tool to support healthy nutrition choices and weight loss and to improve body satisfaction, mental health and vitality.
To analyze the intervention components, levels of influence, explicit use of theory, and conditions for sustainability of currently used lifestyle interventions within lifestyle approaches aiming at physical activity and nutrition in healthcare organizations supporting people with Intellectual Disabilities (ID).
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.