Network Applied Design Research (NADR) made an inventory of the current state of Circular Design Research in the Netherlands. In this publication, readers will find a summary of six promising ‘gateways to circularity’ that may serve as entry points for future research initiatives. These six gateways are: Looped Systems; Extension of Useful Lifetime; Servitisation; New Materials and Production Techniques; Information Technology and Digitization; and Creating Public and Industry Awareness. The final chapter offers an outlook into topics that require more profound examination. The NADR hopes that this publication will serve as a starting point for discussions among designers, entrepreneurs, and researchers, with the goal of initiating future collaborative projects. It is the NADR's belief that only through intensive international cooperation, we can contribute to the realization of a sustainable, circular, and habitable world.
DOCUMENT
De World Conference on Physics Education vond plaats in Istanbul van 1 – 6 juli met als thema The Role of Context, Culture,and Representations in Physics Teaching and Learning. Deze conferentie wordt eens in de vier jaar door de Europese, Aziatische, en Amerikaanse natuurkunde onderwijs organisaties georganiseerd . Er waren 350 deelnemers waaronder de top van de Amerikaanse en Europese natuurkunde onderwijsspecialisten. Presentaties betroffen allerlei aspecten van natuurkunde onderwijs zoals toepassing van ICT, begripsmoeilijkheden van leerlingen, toetsing, onderzoekend leren, spectaculaire demonstraties, etc. HvA was vertegenwoordigd door Mirjam Venneker van VO-BVE-BiNaSk en lector Ed van den Berg (Pabo). Ed was een van de keynote speakers. Een downloadable annotated powerpoint is te vinden op: http://www.wcpe2012.org/keynote-speakers.html.
MULTIFILE
This OP was deployed in two phases, focusing on Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G). Its first phase took place at a private residence in Loughborough and ran from March 2017 up to December 2017. This phase 1 is also referred to as the ‘Loughborough pilot’. The second phase took place from February 2020 until present at a comparable residence in Burton-upon-Trent, thereafter, referred to as the ‘Burton pilot’ or ‘phase 2’. Both pilots included bi-directional chargers, Electric Vehicles (EV), Battery Static Storage (BSS) and rooftop solar PhotoVoltaic panels (PV).The main goals of this pilot were to demonstrate the added value of V2H and V2G of using additional energy storage and PV in households.Challenges encountered in the project include interoperability issues, particularly in phase 1, and the unforeseen development of the homeowner selling his house, meaning a new location needed to be found. However, this challenge ultimately provided an excellent opportunity to implement lessons for interoperability and to act upon the recommendations from the intermediate analysis of the Loughborough pilot. This report is mainly focussed on phase 1 (Loughborough), and additional analysis for Burton-upon-Trent (phase 2) can be found in the appendix.
DOCUMENT
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.