The world is rapidly transforming. Economic, ecological and technological developments transcend existing boundaries and challenge the way we innovate. The challenge we face is to reinvent innovation as well, changing the way organisations and industries innovate and cooperate. Only with a new approach we can design a better future: an approach where stakeholders from government, organisations, companies and users participate in new ways of collaboration; an approach where solutions are realised that makes our society future-proof. Participatory innovation means that the innovation team changes: expanding beyond the boundaries of the own organisation. For organisations and companies, this is a huge step. Every partner must be willing to think and act beyond their own borders and participate in a joint effort. Participative innovation is a new way of working, where new challenges are encountered. In the field of urban lighting, this transformation is strongly felt. This paper will further explore the challenge and describe a rich case study where participative innovation is used to rethink, redesign and realise the solutions to transform urban lighting from functional lighting to improving social quality.
DOCUMENT
Health symptoms may be influenced, supported, or even controlled via a lighting control system which includes personal lighting conditions and personal factors (health characteristics). In order to be effective, this lighting control system requires both continuous information on the lighting and health conditions at the individual level. A new practical method to determine these continuous personal lighting conditions has been developed: location-bound estimations (LBE). This method was validated in the field in two case studies; comparisons were made between the LBE and location-bound measurements (LBM) in case study 1 and between the LBE and person-bound measurements (PBM) in case study 2. Overall, the relative deviation between the LBE and LBM was less than 15%, whereas the relative deviation between the LBE and PBM was 32.9% in the best-case situation. The relative deviation depends on inaccuracies in both methods (i.e., LBE and PBM) and needs further research. Adding more input parameters to the predictive model (LBE) will improve the accuracy of the LBE. The proposed first approach of the LBE is not without limitations; however, it is expected that this practical method will be a pragmatic approach of inserting personal lighting conditions into lighting control systems.
DOCUMENT
Long-term care facilities are currently installing dynamic lighting systems with the aim to improve the well-being and behaviour of residents with dementia. The aim of this study was to investigate the implementation of dynamic lighting systems from the perspective of stakeholders and the performance of the technology. Therefore, a questionnaire survey was conducted with the management and care professionals of six care facilities. Moreover, light measurements were conducted in order to describe the exposure of residents to lighting. The results showed that the main reason for purchasing dynamic lighting systems lied in the assumption that the well-being and day/night rhythmicity of residents could be improved. The majority of care professionals were not aware of the reasons why dynamic lighting systems were installed. Despite positive subjective ratings of the dynamic lighting systems, no data were collected by the organizations to evaluate the effectiveness of the lighting. Although the care professionals stated that they did not see any large positive effects of the dynamic lighting systems on the residents and their own work situation, the majority appreciated the dynamic lighting systems more than the old situation. The light values measured in the care facilities did not exceed the minimum threshold values reported in the literature. Therefore, it seems illogical that the dynamic lighting systems installed in the researched care facilities will have any positive health effects.
DOCUMENT
Lighting accounts for a significant amount of electrical energy consumption in office buildings, up to 45% of the total consumed. This energy consumption can be reduced by as much as 60% through an occupant-dependent lighting control strategy. With particular focus on open-plan offices, where the application of this strategy is more challenging to apply due to differences in individual occupancy patterns, this paper covers (1) to which extent individual occupancy-based lighting control has been tested, (2) developed, and (3) evaluated. Search terms were defined with use of three categories, namely ‘occupancy patterns’, ‘lighting control strategy’, and ‘office’. Relevant articles were selected by a structured search through key online scientific databases and journals. The 24 studies identified as eligible were evaluated on six criteria: (1) study characteristics, (2) office characteristics, (3) lighting system characteristics, (4) lighting control design, (5) post-occupancy evaluation, and (6) conclusions, and this was used to answer the research questions. It was concluded that the strategy has not been tested yet with field studies in open-plan offices, but that it needs further development before it can be applied in these type of offices. Although lighting currently tends to be controlled at workspace level, many aspects of the strategy can be further developed; there is potential to further increase energy savings on lighting within open-plan office spaces. Individual occupancy-based lighting control requires further validation, focussing on the factors influencing its energy savings, on its cost effectiveness, and on its acceptability for users.
DOCUMENT
The promotor was Prof. Erik Jan Hultink and copromotors Dr Ellis van den Hende en Dr R. van der Lugt. The title of this dissertation is Armchair travelling the innovation journey. ‘Armchair travelling’ is an expression for travelling to another place, in the comfort of one’s own place. ‘The innovation journey’ is the metaphor Van de Ven and colleagues (1999) have used for travelling the uncharted river of innovation, the highly unpredictable and uncontrollable process of innovation. This research study began with a brief remark from an innovation project leader who sighed after a long and rough journey: ‘had I known this ahead of time…’. From wondering ‘what could he have known ahead of time?’ the immediate question arose: how do such innovation journeys develop? How do other innovation project leaders lead the innovation journey? And could I find examples of studies about these experiences from an innovation project leader’s perspective that could have helped the sighing innovation project leader to have known at least some of the challenges ahead of time? This dissertation is the result of that quest, as we do know relatively little how this process of the innovation project leader unfolds over time. The aim of this study is to increase our understanding of how innovation project leaders lead their innovation journeys over time, and to capture those experiences that could be a source for others to learn from and to be better prepared. This research project takes a process approach. Such an approach is different from a variance study. Process thinking takes into account how and why things – people, organizations, strategies, environments – change, act and evolve over time, expressed by Andrew Pettigrew (1992, p.10) as catching “reality in flight”.
MULTIFILE
Research demonstrated a large variety regarding effects of light (e.g. health, performance, or comfort effects). Since human health is related to each individual separately, the lighting conditions around these individuals should be analysed individually as well. This paper provides, based on a literature study, an overview identifying the currently used methodologies for measuring lighting conditions in light effect studies. 22 eligible articles were analysed and this resulted in two overview tables regarding the light measurement methodologies. In 70% of the papers, no measurement details were reported. In addition, light measurements were often averaged over time (in 84% of the papers) or location level (in 32% of the papers) whereas it is recommended to use continuous personal lighting conditions when light effects are being investigated. Conclusions drawn in light effect studies based on personal lighting conditions may be more trusting and valuable to be used as input for an effect-driven lighting control system.
LINK
Public lighting’s primary purpose is nighttime visibility for security and safety. How to meet so many requirements of so many stakeholders? The key to developing a good plan is to relate lighting to functions of public spaces, because street lighting is more than a technical requirement, a security need, or a design element. It can be thought of and utilized in terms of how the type, placement, and wattage affect how a street is perceived and used. With present-day used street lighting systems however, flexibility is expensive, as is maintenance and energy consumption. A new solution is to use LED lighting with a Direct Current power system. Advantages are a decrease in: energy conversions; material use; amount of switch- boxes; components; labour costs and environmental comfort. The overall implementation of LED and DC will result in better control and efficient maintenance due to integrated bidirectional communication. A challenge is the relatively high investment for these new solutions. Another challenge; DC is not a standard yet in rules and regulations. In the paper the transition to direct current public lighting system will be described with all the pros and cons. A new concept of public ownership, to overcome financial challenges will be discussed. M Hulsebosch1, P Willigenburg2 ,J Woudstra2 and B Groenewald3 1CityTec b.v., Alblasserdam, The Netherlands 2The Hague University of Applied Sciences, The Hague, The Netherlands 3Cape Peninsula University of Technology, Cape Town, South Africa 10.1109/ICUE.2014.6904186
DOCUMENT
Daylight has been associated with multiple health advantages. Some of these claims are associations, hypotheses or beliefs. This review presents an overview of a scientific literature search on the proven effects of daylight exposure on human health. Studies were identified with a search strategy across two main databases. Additionally, a search was performed based on specific health effects. The results are diverse and either physiological or psychological. A rather limited statistically significant and well-documented scientific proof for the association between daylight and its potential health consequences was found. However, the search based on specific health terms made it possible to create a first subdivision of associations with daylight, leading to the first practical implementations for building design.
DOCUMENT
Purpose: The purpose of this paper is to report the grounded theory empirical validation on key categories within a design-led methodology to envision urban futures. The paper focuses on the editorial products and the design concepts that constitute the heart of the approach. An original elaboration of trend clusters is presented as an exemplification of the outcome of this trend research approach. Although the approach was not created from the viewpoint of tourism and leisure, bibliographic notes on place-making complement it for this journal. Design/methodology/approach: The paper presents empirical findings extracted by the means of the grounded theory, with the purpose to empirically validate two key categories (product and process) of a urban futures methodology. The methodology is an application of High Design, the process in use at Royal Philips BV for two decades. This methodology is contextualized within the constructivist episteme, as defined by the editors of this journal in a separate publication. Bibliographic references to place-making complete the paper. Findings: The following findings are provided: empirical validation of the city.people.light communication platform (qualitative research); empirical validation of the city.people.light workshop practice (qualitative research); and bibliographic descriptions of the design process governing city.people.light and newly developed urban futures trend clusters, at European level, as an exemplification of the program/approach outcome. Research limitations/implications: The paper is structured according to a multi-layered editorial focus. Empirical findings were generated at primary research level in a 2013-2015 grounded theory projected by the author. Furthermore, the author directed the research processes and products that are the object of empirical validation. Newly defined elaborations and a discussion thereof is offered, taking into account contemporary place-making issues. Practical implications: The original design-based methodology is a structured practice in urban futures from applied sciences and corporate innovation viewpoint. In this paper, its key categories are empirically validated through the grounded theory. Additionally, outcome from the original foresight programs is presented and a bibliographic review is provided from the viewpoint of place-making. Social implications: The co-creative methodology herein empirically validated is socio-cultural centered, with a strong drive to coutnerbalance the positivist and engineering corporate mindset through a humanistic concern for people. The framework in terms of place-making takes into account postmodern evolutions of the field. Originality/value: The paper benefits from a unique mix of: epistemic note on tourism, leisure, and the future; original urban futures scenarios and design concepts from a world class corporate innovation program; and the actual empirical core of the grounded theory validation as performed in a dedicated research project. These three separate streams are mutually related.
DOCUMENT
How can the grower and the supplier in the greenhouse horticulture industry gain competitive advantage through radical innovation? The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. Realizing this ambition requires strengthening the knowledge base, stimulating innovation, entrepreneurship and education. It also requires professionalizing people. In this paper an innovation and entrepreneurial educational and research programme is introduced. This KITE120-programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. It helps making the step from ambition to action, and from incremental to radical innovation. We call this an 'Amazing Jump'.
DOCUMENT