The present study examined differences in visual search and locomotor behavior among a group of skilled 10–12 year-old football players. The participants watched video clips of a 4-to-4 position game, presented on a large screen. The participants were asked to take part in the game by choosing the best position for the reception of the ball passed by one of the players in the clip. Participants’ visual search and locomotor behavior were collected continuously throughout the presentation of the clip. A within-group comparison was made based upon the participants’ interception score, i.e., more at the correct position. The findings show that the high-score group looked more to the ball area, while the players in the low-score group concentrated on the receiving player and on the hips/upper-body region of the passing player. The players in the high-score group covered a significantly greater distance compared to the low-score group. It was concluded that differences in visual search and locomotion behavior can be used as indicators for identifying talented junior football players.
DOCUMENT
The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data collection was carried out in 2 experimental sessions (5 months apart).
MULTIFILE
In this thesis we analyzed clinimetric measurement properties of physical fitness tests in wheelchair-using youth with SB. Furthermore, the amount of physical behavior in wheelchair-using youth with SB was quantified and associations with age, gender, VO2peak and Hoffer classification were evaluated. Finally, we described the factors associated with physical behavior in youth with SB and youth with physical disabilities, after which the evidence of interventions to improve physical behavior in youth with physical disabilities was analyzed. This last chapter presents the theoretical and clinical implications. At the end, methodological considerations and directions for further research will be discussed after which the overall conclusion is presented.
DOCUMENT
BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
DOCUMENT
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
Animal welfare is a multidimensional phenomenon and currently its on-farm assessment requires complex, multidimensional frameworks involving farm audits which are time-consuming, infrequent and expensive. The core principle of precision agriculture is to use sensor technologies to improve the efficiency of resource use by targeting resources to where they give a benefit. Precision livestock farming (PLF) enables farm animal management to move away from the group level to monitoring and managing individual animals. A range of precision livestock monitoring and control technologies have been developed, primarily to improve livestock production efficiency. Examples include using camera systems monitoring the movement of housed broiler chickens to detect problems with feeding systems or disease and leg-mounted accelerometers enabling the detection of the early stages of lameness in dairy cows. These systems are already improving farm animal welfare by, for example, improving the detection of health issues enabling more rapid treatment, or the detection of problems with feeding systems helping to reduce the risk of hunger. Environmental monitoring and control in buildings can improve animal comfort, and automatic milking systems facilitate animal choice and improve human-animal interactions. Although these precision livestock technologies monitor some parameters relevant to farm animal welfare (e.g. feeding, health), none of the systems yet provide the broad, multidimensional integration that is required to give a complete assessment of an animal’s welfare. However, data from PLF sensors could potentially be integrated into automated animal welfare assessment systems, although further research is needed to define and validate this approach.
DOCUMENT
During times of high activity by predators and competitors, herbivores may be forced to forage in patches of low‐quality food. However, the relative importance in determining where and what herbivores forage still remains unclear, especially for small‐ and intermediate‐sized herbivores. Our objective was to test the relative importance of predator and competitor activity, and forage quality and quantity on the proportion of time spent in a vegetation type and the proportion of time spent foraging by the intermediate‐sized herbivore European hare (Lepus europaeus). We studied red fox (Vulpes vulpes) as a predator species and European rabbit (Oryctolagus cuniculus) as a competitor. We investigated the time spent at a location and foraging time of hare using GPS with accelerometers. Forage quality and quantity were analyzed based on hand‐plucked samples of a selection of the locally most important plant species in the diet of hare. Predator activity and competitor activity were investigated using a network of camera traps. Hares spent a higher proportion of time in vegetation types that contained a higher percentage of fibers (i.e., NDF). Besides, hares spent a higher proportion of time in vegetation types that contained relatively low food quantity and quality of forage (i.e., high percentage of fibers) during days that foxes (Vulpes vulpes) were more active. Also during days that rabbits (Oryctolagus cuniculus) were more active, hares spent a higher proportion of time foraging in vegetation types that contained a relatively low quality of forage. Although predation risk affected space use and foraging behavior, and competition affected foraging behavior, our study shows that food quality and quantity more strongly affected space use and foraging behavior than predation risk or competition. It seems that we need to reconsider the relative importance of the landscape of food in a world of fear and competition.
DOCUMENT
Introduction Negative pain-related cognitions are associated with persistence of low-back pain (LBP), but the mechanism underlying this association is not well understood. We propose that negative pain-related cognitions determine how threatening a motor task will be perceived, which in turn will affect how lumbar movements are performed, possibly with negative long-term effects on pain. Objective To assess the effect of postural threat on lumbar movement patterns in people with and without LBP, and to investigate whether this effect is associated with task-specific pain-related cognitions. Methods 30 back-healthy participants and 30 participants with LBP performed consecutive two trials of a seated repetitive reaching movement (45 times). During the first trial participants were threatened with mechanical perturbations, during the second trial participants were informed that the trial would be unperturbed. Movement patterns were characterized by temporal variability (CyclSD), local dynamic stability (LDE) and spatial variability (meanSD) of the relative lumbar Euler angles. Pain-related cognition was assessed with the task-specific ‘Expected Back Strain’-scale (EBS). A three-way mixed Manova was used to assess the effect of Threat, Group (LBP vs control) and EBS (above vs below median) on lumbar movement patterns. Results We found a main effect of threat on lumbar movement patterns. In the threat-condition, participants showed increased variability (MeanSDflexion-extension, p<0.000, η2 = 0.26; CyclSD, p = 0.003, η2 = 0.14) and decreased stability (LDE, p = 0.004, η2 = 0.14), indicating large effects of postural threat. Conclusion Postural threat increased variability and decreased stability of lumbar movements, regardless of group or EBS. These results suggest that perceived postural threat may underlie changes in motor behavior in patients with LBP. Since LBP is likely to impose such a threat, this could be a driver of changes in motor behavior in patients with LBP, as also supported by the higher spatial variability in the group with LBP and higher EBS in the reference condition.
LINK
Talloze studies tonen aan dat een fysiek actieve leefstijl bloeddruk, cholesterol en gewicht verlaagt, botten en spieren versterkt en het risico van hart- en vaatziekten, darmkanker en diabetes type II vermindert. Bewegen kan dus worden gezien als een medicijn wat voor iedereen toegankelijk is.
DOCUMENT
A commentary on: Older adults can improve compensatory stepping with repeated postural perturbations by Dijkstra,B.W., Horak,F.B., Kamsma,Y.P.T., and Peterson,D.S.(2015).Front.AgingNeurosci. 7:201. doi:10.3389/fnagi.2015.00201. In sum, the results of Dijkstra etal. (2015) are of importance and significance for the field of falls prevention and stability control in aging. In particular, the work highlights the importance of multidirectional step or perturbation training, due to a lack of transfer across tasks. Whether this would hold for multidirectional gait perturbations is unclear, due to the influence of forward velocity during walking. Future work should explore different types, intensities and frequencies of perturbations in order to determine the most effective strategy for improving dynamic stability control in healthy older adults and inpatients with declined locomotor performance and increased falls risk. Finally, as Dijkstra etal. (2015) and previous studies found floor effects in the adaptation of young participants, further attempts should be made to appropriately scale perturbations to participant or groupability, in order to reliably compare adaptation across different groups.
DOCUMENT