Leisure constraints affecting participation can be divided into intrapersonal, interpersonal, and structural constraints. Only a few studies in the event industry have investigated the role of leisure constraints. These studies show different effects of leisure constraints on participation. The purpose of this article is to examine the influence of leisure constraints on revisit intention regarding music festivals. This study is of quantitative nature and utilizes survey research. A sample of 1,063 respondents was used within the analyses, measuring the influence of perceived constraints on revisit intention. The results show that intrapersonal constraints (a lack of importance and interest) and structural constraints (travel time, a lack of time, costs, and a lack of satisfaction with the festival area) significantly influence revisit intention. In line with results from other leisure industries, intrapersonal constraints show the strongest effects. Interpersonal constraints do not affect revisit intentions. Music festivals should ideally maintain a high level of engagement with the visitors throughout the year to ensure continuous involvement.
MULTIFILE
Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition of the electrical vehicle fleet and on the configuration of the service network, to achieve a successful implementation of electric vehicles in the innercity of Amsterdam. Additional question in our research is whether the CO2 emission reduces at all or might even increase due to an increase of tripkilometres as a consequence of mileage constraints by the batteries. The aim of the implementation of the research is to determine the ideal fleet to transport a known demand of cargo, located at a central depot, to a known set of recipients using vehicles of varying types. The problem can be classified as a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). In addition to the regular constraints that apply to the regular FSMVRP, in our case also time windows apply to the cargo that needs to be transported (FSMVRPTW). The operation range of the vehicles is constrained by the battery capacity. We suggest modifications to existing formulations of the FSMVRPTW to make it suitable for the application on cases with electrical vehicles. We apply the model to create an optimal fleet configuration and the service routes. In our research case of the Cargohopper in Amsterdam, the performance of alternative fleet compositions is determined for a variety of scenarios, to assess their robustness. The main uncertainties addressed in the scenarios are the cargo composition, the operation range of the vehicles and their operation speed. Based on our research findings in Amsterdam we conclude that the current generation of electric vehicles as a part of urban consolidation concept have the ability to perform urban freight transport efficiently (19% reduction in vehicle kilometres) and meanwhile have the capability to improve air quality and reduce CO2-emissions by 90%, and reduce noise nuisance in the inner cities of our (future) towns.
LINK
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE