Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
DOCUMENT
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
DOCUMENT
Summary Project objectives This study fits into a larger research project on logistics collaboration and outsourcing decisions. The final objective of this larger project is to analyze the logistics collaboration decision in more detail to identify thresholds in these decisions. To reach the overall objectives, the first step is to get a clearer picture on the chemical and logistics service providers industry, sectors of our study, and on logistics collaboration in these sectors. The results of this first phase are presented in this report. Project Approach The study consists of two parts: literature review and five case studies within the chemical industry. The literature covers three topics: logistics collaboration, logistics outsourcing and purchasing of logistics services. The five case studies are used to refine the theoretical findings of the literature review. Conclusions Main observations during the case studies can be summarized as follows: Most analyzed collaborative relationships between shippers and logistics service providers in the chemical industry are still focused on operational execution of logistics activities with a short term horizon. Supply management design and control are often retained by the shippers. Despite the time and cost intensive character of a logistics service buying process, shippers tendering on a very regular basis. The decision to start a new tender project should more often be based on an integral approach that includes all tender related costs. A lower frequency of tendering could create more stability in supply chains. Beside, it will give both, shippers and LSPs, the possibility to improve the quality of the remaining projects. Price is still a dominating decision criterion in selecting a LSP. This is not an issue as long as the comparison of costs is based on an integral approach, and when shippers balance the cost criterion within their total set of criteria for sourcing logistics services. At the shippers' side there is an increased awareness of the need of more solid collaboration with logistics service providers. Nevertheless, in many cases this increased awareness does not actually result in the required actions to establish more intensive collaboration. Over the last years the logistics service providers industry was characterized by low profit margins, strong fragmentation and price competition. Nowadays, the market for LSPs is changing, because of an increasing demand for logistics services. To benefit from this situation a more pro-active role of the service providers is required in building stronger relationships with their customers. They should pay more attention on mid and long term possibilities in a collaborative relation, in stead of only be focused on running the daily operation.
DOCUMENT
Supply Chain Management (SCM) is een thema, waarover intussen al meer dan een decennium gediscussieerd wordt en waaraan een hoog rationaliseringspotentieel wordt toegeschreven. Het thema SCM geniet veel aandacht binnen de grote ondernemingen. Maar hoe staat het met de toepassing van Supply Chain Management binnen het MKB? Van algemene Supply Chains, de keten vanaf het aanleveren van grondstoffen tot aan de aflevering van het product bij de eindverbruiker, maken immers ook middelgrote en kleine bedrijven (MKB) deel uit. Maar het MKB beschikt vaak niet over de informatie en de capaciteiten om zich in voldoende mate met het thema bezig te houden. Natuurlijk zien we wel toepassingen van SCM-concepten binnen het MKB, maar dan zijn deze vaak opgelegd door grote spelers in de keten
DOCUMENT
Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
DOCUMENT
AbstractHistorically, epidemics and plagues are repeatedly reported to have happened since the ancient civilizations (Egypt, Greece, Rome and imperial China). Most known examples of a devastating global pandemics in recent history are the ‘Black Death’ (14th century) and the global influenza (1918-1919), also known as ‘Spanish Flu’, that has killed nearly 50 million people in the world. Even thoughpandemics may vary in their dimensions, length (short vs. long), scope (local/regional, national, global) and severity of effects (minimal effects or maximal effects), they all represent distinct exogenous and endogenous shocks that have far reaching effects on population, health, economy and other societal domains.Currently, the Covid-19 pandemic has relentlessly spreaded around the world, leaving behind destructive marks on health, populations, economies and societies. The Covid-19 could spread quickly around the globe because of the current structure of the global economy, which is highly interconnected through sophisticated global transport networks. An important characteristic of a suchnetworked complex system is it vulnerability to unattended events of systemic risk such as the Covid-19 pandemic for example. These systemic risks cause substantial cascading effects, which lead to extreme outcomes that could permanently alter economic, environmental, and social systems.In this article, we first, present, discuss and analyze the potential impacts of the Covid-19 on global economy, trade and supply chains, by focusing on Europe and/or the Netherlands. Second, we examine the effects of the Covid-19 crisis on the shipping industry and on the hub ports and the policy measures that have been applied by different countries around the world.
DOCUMENT
Fluidity models in the supply chain privilege the sustainable integration of capabilities and collaboration among its members in order to guarantee an efficient and safe flow of resources throughout all its processes. This research proposes a fluidity model for the agroindustry supply chain as a solution with regard to the sector’s needs of supply chain processes, and opportunities to collaborate within the field of innovation and sustainability through of traceability and proactive risk management as a tool for creating resilient systems. The model is based on a holistic vision that will allow it to adapt to an ever more complex and continuously transformed global environment that demands solutions to assess the global impact of local decision-making in the supply chain over a period of time, considering its implications and contributions to the agroindustry and agro-logistics sector. Finally, pertinent research areas are identified in the integration of agroindustry supply chain echelons.
DOCUMENT
This chapter proposes sustainable supply chains in agrifoods, achieved through logistical strategies to minimize food waste and losses. Proposals will recover organic and inorganic waste and reincorporate it into the supply chain or add it to new chains through new products generated from food waste. A literature review is presented regarding the causes of food losses and waste within the supply chain and the strategic opportunities in the logistical process to reduce such losses. The creation of models that include the three dimensions of sustainability in food logistics is required in order to achieve a reduction in waste and food losses in transport, as well as to minimize costs and environmental impacts. If a correct sustainable logistics is carried out, it would favor the reincorporation of waste into new supply chains.
DOCUMENT
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE