Process Mining can roughly be defined as a data-driven approach to process management. The basic idea of process mining is to automatically distill and to visualize business processes using event logs from company IT-systems (e.g. ERP, WMS, CRM etc.) to identify specific areas for improvement at an operational level. An event log can be described as a database entry that signifies a specific action in a software application at a specific time. Simple examples of these actions are customer order entries, scanning an item in a warehouse, and registration of a patient for a hospital check-up.Process mining has gained popularity in the logistics domain in recent years because of three main reasons. Firstly, the logistics IT-systems' large and exponentially growing amounts of event data are being stored and provide detailed information on the history of logistics processes. Secondly, to outperform competitors, most organizations are searching for (new) ways to improve their logistics processes such as reducing costs and lead time. Thirdly, since the 1970s, the power of computers has grown at an astonishing rate. As such, the use of advance algorithms for business purposes, which requires a certain amount of computational power, have become more accessible.Before diving into Process Mining, this course will first discuss some basic concepts, theories, and methods regarding the visualization and improvement of business processes.
MULTIFILE
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE
Efficiency of city logistics activities suffers due to conflicting personal preferences and distributed decision making by multiple city logistics stakeholders. This is exacerbated by interdependency of city logistics activities, decision making with limited information and stakeholders’ preference for personal objectives over system efficiency. Accordingly, the key to understanding the causes of inefficiency in the city logistics domain is understanding the interaction between heterogeneous stakeholders of the system. With the capabilities of representing a system in a natural and flexible way, agent based modelling (ABM) is a promising alternative for the city logistics domain. This research focuses on developing a framework for the successful implementation of the ABM approach for the city logistics domain. The framework includes various elements – a multi-perspective semantic data model (i.e. ontology) and its validation, the development of an agent base model using this ontology, and a validation approach for the agent-based model. Conclusively, the framework shows that a rigorous course can be taken to successfully implement agent based modelling approach for the city logistics domain.