BACKGROUND: Self-monitoring of physical activity (PA) using an accelerometer is a promising intervention to stimulate PA after hospital discharge.OBJECTIVE: This study aimed to evaluate the feasibility of PA self-monitoring after discharge in patients who have undergone gastrointestinal or lung cancer surgery.METHODS: A mixed methods study was conducted in which 41 patients with cancer scheduled for lobectomy, esophageal resection, or hyperthermic intraperitoneal chemotherapy were included. Preoperatively, patients received an ankle-worn accelerometer and the corresponding mobile health app to familiarize themselves with its use. The use was continued for up to 6 weeks after surgery. Feasibility criteria related to the study procedures, the System Usability Scale, and user experiences were established. In addition, 6 patients were selected to participate in semistructured interviews.RESULTS: The percentage of patients willing to participate in the study (68/90, 76%) and the final participation rate (57/90, 63%) were considered good. The retention rate was acceptable (41/57, 72%), whereas the rate of missing accelerometer data was relatively high (31%). The mean System Usability Scale score was good (77.3). Interviewed patients mentioned that the accelerometer and app were easy to use, motivated them to be more physically active, and provided postdischarge support. The technical shortcomings and comfort of the ankle straps should be improved.CONCLUSIONS: Self-monitoring of PA after discharge appears to be feasible based on good system usability and predominantly positive user experiences in patients with cancer after lobectomy, esophageal resection, or hyperthermic intraperitoneal chemotherapy. Solving technical problems and improving the comfort of the ankle strap may reduce the number of dropouts and missing data in clinical use and follow-up studies.
OBJECTIVES: The aim of the present study was to disentangle the impact of age and that of cancer diagnosis and treatment on functional status (FS) decline in older patients with cancer.MATERIALS AND METHODS: Patients with breast and colorectal cancer aged 50-69years and aged ≥70years who had undergone surgery, and older patients without cancer aged ≥70years were included. FS was assessed at baseline and after 12months follow-up, using the Katz index for activities of daily living (ADL) and the Lawton scale for instrumental activities of daily living (IADL). FS decline was defined as ≥1 point decrease on the ADL or IADL scale from baseline to 12months follow-up.RESULTS: In total, 179 older patients with cancer (≥ 70years), 341 younger patients with cancer (50-69years) and 317 older patients without cancer (≥ 70years) were included. FS decline was found in 43.6%, 24.6% and 28.1% of the groups, respectively. FS decline was significantly worse in older compared to younger patients with cancer receiving no chemotherapy (44.5% versus 17.6%, p<0.001), but not for those who did receive chemotherapy (39.4% versus 30.8%, p=0.33). Among the patients with cancer, FS decline was significantly associated with older age (OR 2.63), female sex (OR 3.72), colorectal cancer (OR 2.81), polypharmacy (OR 2.10) and, inversely, with baseline ADL dependency (OR 0.44).CONCLUSION: Cancer treatment, and older age are important predictors of FS decline. The relation of baseline ADL dependency and chemotherapy with FS decline suggest that the fittest of the older patients with cancer were selected for chemotherapy.
This systematic review aims to get insight into the feasibility of cardiopulmonary exercise testing (CPET) in patients with cancer prior to a physical exercise programme. We will focus on quality (defined as the adherence to international guidelines for methods of CPET) and safety of CPET. Furthermore, we compare the peak oxygen uptake (V̇O2peak) values of patients with cancer with reference values for healthy persons to put these values into a clinical perspective. A computer aided search with ‘cardiopulmonary exercise testing’ and ‘cancer’ using MEDLINE, EMBASE, Pedro, CINAHL® and SPORTDiscus™ was carried out. We included studies in which CPET with continuous gas exchange analysis has been performed prior to a physical exercise programme in adults with cancer. Twenty studies describing 1158 patients were eligible. Reported adherence to international recommendations for CPET varied per item. In most studies, the methods of CPET were not reported in detail. Adverse events occurred in 1% of patients. The percentage V̇O2peak of reference values for healthy persons varied between 65% and 89% for tests before treatment, between 74% and 96% for tests during treatment and between 52% and 117% for tests after treatment. Our results suggest that CPET is feasible and seems to be safe for patients with cancer prior to a physical exercise programme. We recommend that standard reporting and quality guidelines should be followed for CPET methods. The decreased V̇O2peak values of patients with cancer indicate that physical exercise should be implemented in their standard care.
Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.