The relentless growth in Mexico City’s aviation traffic has inevitably strained capacity development of its airport, raising thedilemma between the possible solutions. In the present study, Mexico’s Multi-Airport System is subjected to analysis by meansof multi-model simulation, focusing on the capacity-demand problem of the system. The methodology combines phases ofmodelling, data collection, simulation, experimental design, and analysis. Drawing a distinction from previous works involvingtwo-airport systems. It also explores the challenges raised by the Covid-19 pandemic in Mexico City airport operations, with adiscrete-event simulation model of a multi-airport system composed by three airports (MEX, TLC, and the new airport NLU).The study is including the latest data of flights, infrastructures, and layout collected in 2021. Therefore, the paper aims toanswer to the question of whether the system will be able to cope with the expected demand in a short-, medium-, and longtermby simulating three future scenarios based on aviation forecasts. The study reveals potential limitations of the system astime evolves and the feasibility of a joint operation to absorb the demand in such a big region like Mexico City.
DOCUMENT
This study presents a model-based analysis of the groundconnectivity performance of the future Santa Lucia-Mexico City multi-airport system. The plan of the currentgovernment is to connect the two airports by a dedicatedline, either by bus or other transport so that passengersand airlines can get the benefit of a coordinatedoperation. Performance indicators such as minimumconnecting time, vehicle utilization and passengerwaiting time are used to evaluate the future performance.Results reveal that when all passengers are allowed to usethe connection, a big number of vehicles are required forproviding a good level of service while in the case of arestricted use to only transfer passengers the operationwith Bus would have a good performance.
DOCUMENT
The current study presents a methodology for analysing and identifying the limitations in capacity of an airport, the methodology has been implemented in the case of Mexico City Airport which is a congested airport in Mexico. The methodology allows identifying what room is left for absorbing more traffic and what options are available while a new infrastructure is in place. The methodology revealed, that there is still room for absorbing more traffic under certain conditions and starting from that, actions can be taken in order to increase the capacity or reducing congestion in the airport.
DOCUMENT
In less than two years, the concept of overtourism has come to prominence as one of the most discussed issues with regards to tourism in popular media and, increasingly, academia. In spite of its popularity, the term is still not clearly delineated and remains open to multiple interpretations. The current paper aims to provide more clarity with regard to what overtourism entails by placing the concept in a historical context and presenting results from a qualitative investigation among 80 stakeholders in 13 European cities. Results highlight that overtourism describes an issue that is multidimensional and complex. Not only are the issues caused by tourism and nontourism stakeholders, but they should also be viewed in the context of wider societal and city developments. The article concludes by arguing that while the debate on overtourism has drawn attention again to the old problem of managing negative tourism impacts, it is not well conceptualized. Seven overtourism myths are identified that may inhibit a well-rounded understanding of the concept. To further a contextualized understanding of overtourism, the paper calls for researchers from other disciplines to engage with the topic to come to new insights.
MULTIFILE
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE
This paper focuses on the use of discrete event simulation (DES) as a decision support tool for airport land use development. As a study case, Querétaro Airport (Mexico) is used, due to its rapid growth and the different services it offers. The SIMIO® software was used to carry out a macro-level simulation of the airport’s processes, considering generic process times, flight types and demand schedules. The resulting strategic simulation model can be used to diagnose the current growth situation, analyse the airport's growth potential, and evaluate different expansion scenarios using the available land, including the expansion of the terminal building, cargo operations or MRO. The arrival and departure of aircraft (commercial, cargo, maintenance, aviation school and private aviation) at the airport were simulated to detect bottlenecks for different expansion scenarios, that aim to find an optimal balance between the growth options in the different airport grounds. The objective is to compare the potential growth of different layout expansion possibilities. Preliminary results indicate that land use options have a great impact on the growth potential of the airport and some general aviation activities, such as the aviation school, are interfering with the potential growth of other activities at Querétaro Airport.
DOCUMENT
The airport of Mexico City has been declared saturated for most of the day. For that reason, the Mexican government announced a couple of years ago the construction of a completely new one which is supposed to be operative in 2020 in its first phase. However, the technical issues and the economic downturn in the country jeopardise the project; for that reason, it is important to have alternatives that allow investing in a progressive fashion so that the investments are not lost or end up in useless infrastructure like the ones that have taken place in other parts of the world. The current work presents a simulation-based study of the alternative of using one of the runways of the new airport in a remote fashion in case the original project is delayed or even cancelled. The results indicate that the proposed infrastructure alleviates the congestion problem in the current airport, and at the same time allows the traffic growth with performance indicators similar to airports that have remote runways as in the case of Schiphol in The Netherlands.
DOCUMENT
With the increase of needs for controlling the passengers that use different modes of transport such as airports, ports, trains, or future ones as hyper loops, security facilities are a key element to be optimized. In the current study, we present an analysis of a security area within an airport with particular restrictions. To improve the capacity, different categories and policies were devised for processing passengers and we propose to adapt the system to these categories and policies. The results indicated that, by designing a proper category in combination with novel technology, it is possible to increase the capacity to values of 2 digits (in terms of passengers/day). As a proof-of-concept, we use a case study of an area within an airport in Mexico based on data and layout of early 2019.
DOCUMENT
COVID-19 arrived in the world suddenly and unexpectedly. It caused major disruptions at economical, operational and other levels. In the case of flight traffic, the operations were reduced to 10% of their original levels. The question after COVID-19 is how to restart the operations and how to keep the balance between safety and capacity. In this paper we present an analysis using simulation techniques for understanding the impact in a security area of an important airport in Latin America; the airport of Mexico City. The results allow to illustrate the potential congestion given by the implemented covid-19 restriction, even when the traffic recovers only by 25% of the pre-covid-19 traffic. The congestion can be mitigated by applying some layout changes (snake queue vs parallel queue) and when more capacity is added to the system (extra security line). The results will raise situational awareness for airport stakeholders when implementing the actions suggested by different international institutions like WHO, IATA or ICAO.
DOCUMENT
The capacity of the newly inaugurated airport terminal in Mexico City, opened in 2022, has sparked debates regarding its adequacy to accommodate future demand. To address this critical question, our study employs simulation-based analysis to assess the terminal's true potential. By simulating various scenarios, we aim to provide insights into its capacity to handle increasing passenger loads over the coming years and decades. Furthermore, our analysis identifies potential challenges and issues that may arise with the terminal's growth. This research seeks to offer valuable perspectives for stakeholders involved in the airport's planning and management, contributing to informed decisionmaking in ensuring efficient and sustainable aviation infrastructure.
MULTIFILE