The relentless growth in Mexico City’s aviation traffic has inevitably strained capacity development of its airport, raising thedilemma between the possible solutions. In the present study, Mexico’s Multi-Airport System is subjected to analysis by meansof multi-model simulation, focusing on the capacity-demand problem of the system. The methodology combines phases ofmodelling, data collection, simulation, experimental design, and analysis. Drawing a distinction from previous works involvingtwo-airport systems. It also explores the challenges raised by the Covid-19 pandemic in Mexico City airport operations, with adiscrete-event simulation model of a multi-airport system composed by three airports (MEX, TLC, and the new airport NLU).The study is including the latest data of flights, infrastructures, and layout collected in 2021. Therefore, the paper aims toanswer to the question of whether the system will be able to cope with the expected demand in a short-, medium-, and longtermby simulating three future scenarios based on aviation forecasts. The study reveals potential limitations of the system astime evolves and the feasibility of a joint operation to absorb the demand in such a big region like Mexico City.
DOCUMENT
This study presents a model-based analysis of the groundconnectivity performance of the future Santa Lucia-Mexico City multi-airport system. The plan of the currentgovernment is to connect the two airports by a dedicatedline, either by bus or other transport so that passengersand airlines can get the benefit of a coordinatedoperation. Performance indicators such as minimumconnecting time, vehicle utilization and passengerwaiting time are used to evaluate the future performance.Results reveal that when all passengers are allowed to usethe connection, a big number of vehicles are required forproviding a good level of service while in the case of arestricted use to only transfer passengers the operationwith Bus would have a good performance.
DOCUMENT
With the increase of needs for controlling the passengers that use different modes of transport such as airports, ports, trains, or future ones as hyper loops, security facilities are a key element to be optimized. In the current study, we present an analysis of a security area within an airport with particular restrictions. To improve the capacity, different categories and policies were devised for processing passengers and we propose to adapt the system to these categories and policies. The results indicated that, by designing a proper category in combination with novel technology, it is possible to increase the capacity to values of 2 digits (in terms of passengers/day). As a proof-of-concept, we use a case study of an area within an airport in Mexico based on data and layout of early 2019.
DOCUMENT