Electrohydrodynamic atomization (EHDA) is a technique which uses the influence of strong electric fields to manipulate the break-up of a liquid, pumped through a capillary nozzle, into droplets. In this work, an extended description of a specific high flow EHDA mode, known as the simple-jet mode, is presented. In it, a review of different works published about the mode is presented as well as results about the droplet population generated with varicose and whipping break-up using water as the atomized liquid. Additionally, experiments were conducted to investigate whether such atomization method could be used to improve the efficiency of droplet inair evaporation, using a single effect evaporation chamber coupled with a EHDA multinozzle system functioning as a shower head. The liquid used in these experiments was a solution of water and NaCl (35 g L−1) to simulate sea water average concentrations. The results have shown that, the manipulation of the droplet diameter, droplet size distribution and spray angle, provided by EHDA, could improve the droplet evaporation efficiency by up to 40% when combinedwith, e.g. forced convection and higher inlet temperatures.
MULTIFILE
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
In this review, we present the growing scientific evidence showing the importance of protein and amino acid provision in nutritional support and their impact on preservation of muscle mass and patient outcomes.