We propose aesthetic engagement as a valuable construct for organisation studies to advance its contribution to organising for sustainability. Aesthetic engagement is defined as a set of material practices that re-engage humans and systems to trigger and accelerate transitions towards regenerative futures. We adopt an aesthetic, practice-based approach to study the emerging field of circular fashion, zooming in on six research projects evolving around bio-based textile design. Our results show that matter needs to matter more in sustainable organising in three key material practices: (1) re-presenting alternative systems, (2) re-imagining affective materialities and (3) re-claiming embodied ethical agency. Matter that reflects new ‘imagined’ realities - whether in artefacts, bodies or socio-material spaces - could greatly support stakeholder engagement and collective identity-building towards transitioning to regenerative futures.
The transition from home to a nursing home can be stressful and traumatic for both older persons and informal caregivers and is often associated with negative outcomes. Additionally, transitional care interventions often lack a comprehensive approach, possibly leading to fragmented care. To avoid this fragmentation and to optimize transitional care, a comprehensive and theory-based model is fundamental. It should include the needs of both older persons and informal caregivers. Therefore, this study, conducted within the European TRANS-SENIOR research consortium, proposes a model to optimize the transition from home to a nursing home, based on the experiences of older persons and informal caregivers. These experiences were captured by conducting a literature review with relevant literature retrieved from the databases CINAHL and PubMed. Studies were included if older persons and/or informal caregivers identified the experiences, needs, barriers, or facilitators during the transition from home to a nursing home. Subsequently, the data extracted from the included studies were mapped to the different stages of transition (pre-transition, mid-transition, and post-transition), creating the TRANSCITmodel. Finally, results were discussed with an expert panel, leading to a final proposed TRANSCIT model. The TRANSCIT model identified that older people and informal caregivers expressed an overall need for partnership during the transition from home to a nursing home. Moreover, it identified 4 key components throughout the transition trajectory (ie, pre-, mid-, and post-transition): (1) support, (2) communication, (3) information, and (4) time. The TRANSCIT model could advise policy makers, practitioners, and researchers on the development and evaluation of (future) transitional care interventions. It can be a guideline reckoning the needs of older people and their informal caregivers, emphasizing the need for a partnership, consequently reducing fragmentation in transitional care and optimizing the transition from home to a nursing home.
What are the circular possibilities for materials and productsavailable in the Griffiersveld pilot and how can this informationbe presented? Interviews with stakeholders have led to a list ofrequirements for the material passports and what informationthey should include. Existing and experimental materialpassports have been collected and analysed to see whetherthey meet the requirements. The construction materials on siteare identified and circular possibilities of these materials arelisted. Finally an advice is given for the municipality ofApeldoorn for a circular renovation approach.
MULTIFILE
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.
Het Nederlands Openluchtmuseum (NOM) wil actief bijdragen aan een duurzame samenleving met zijn kennis van materialen, producten, diensten en culturele tradities die eeuwenlang functioneerden binnen circulaire gemeenschappen. Ondanks technologische vernieuwing en globalisering heeft het NOM de overtuiging dat deze historische kennis kan bijdragen aan duurzame producten voor de toekomst. Het NOM wil een structurele samenwerking met de creatieve sector om meetbare impact te realiseren binnen en buiten het museum voor de transitie naar een circulaire samenleving. Daarvoor wil het graag zijn collectie en kennis toegankelijk maken voor ontwerpers. Belangrijke praktijkvragen daarbij zijn: Welke rol kan het museum spelen i.s.m. ontwerpers? Hoe kan relevante kennis van het NOM toegankelijk en toepasbaar worden gemaakt voor ontwerpers? Hoe creëer je samen met ontwerpers de gewenste impact in de samenleving? Op basis hiervan is de onderzoeksvraag geformuleerd: Hoe kunnen maatschappelijke organisaties zoals het NOM relevante kennis en artefacten toegankelijk en toepasbaar maken voor ontwerpers t.b.v. meetbare impact voor een circulaire samenleving? Deze onderzoeksvraag is vertaald naar enkele sub-vragen over definities van duurzaamheid en circulariteit, de verwachte rollen van museum en ontwerpers, de gewenste structuur van samenwerking en over de rol van prototypen om de gewenste impact te realiseren. Naast het NOM als MKB, participeren in dit project twee creatieve ondernemers (1 MKB, 1 ZZP-er) die zijn geselecteerd op basis van hun specifieke ontwerpkwaliteiten, hun ervaringen in samenwerken met partners en hun kennis van circulair ontwerp. Samen met docent-onderzoekers en ontwerpstudenten van ArtEZ onderzoeken zij deze vragen. De belangrijkste projectresultaten zijn: prototypen, getest op gewenste maatschappelijke impact; een rapport dat beschrijft hoe het NOM kan samenwerken met de creatieve sector om bij te dragen aan ‘Nederland circulair’; en presentatie- en netwerkbijeenkomsten om kennis te delen en te bouwen aan het netwerk van stakeholders om beoogde impact te realiseren.
The transition to a circular, resource efficient construction sector is crucial to achieve climate neutrality in 2050. Construction stillaccounts for 50% of all extracted materials, is responsible for 3% of EU’s waste and for at least 12% of Green House Gas emissions.However, this transition is lagging, the impact of circular building materials is still limited.To accelerate the positive impact of circulair building materials Circular Trust Building has analyzed partners’ circular initiatives andidentified 4 related critical success factors for circularity, re-use of waste, and lower emissions:1. Level of integration2. Organized trust3. Shared learning4. Common goalsScaling these success factors requires new solutions, skills empowering stakeholders, and joint strategies and action plans. Circular TrustBuilding will do so using the innovative sociotechnical transition theory:1.Back casting: integrating stakeholders on common goals and analyzing together what’s needed, what’s available and who cancontribute what. The result is a joint strategy and xx regional action plans.2.Agile development of missing solutions such a Circular Building Trust Framework, Regional Circular Deals, connecting digitalplatforms matching supply and demand3.Increasing institutional capacity in (de-)construction, renovation, development and regulation: trained professionals move thetransition forward.Circular Trust Building will demonstrate these in xx pilots with local stakeholders. Each pilot will at least realize a 25% reduction of thematerial footprint of construction and renovation