Torpedo is a digital learning environment for developing mathematical problem-solving ability through self-study for pre-service teachers in primary teacher education. To achieve this, Torpedo supports and challenges pre-service teachers’ reflection during and after solving non-routine mathematics problems. To investigate the feasibility of the Torpedo approach, 271 pre-service teachers used Torpedo during one month in a pilot study. They used and evaluated Torpedo’s reflective elements differently. The results varied from pre-service teachers who experienced that reflection really contributed to the development of their problem-solving ability, to pre-service teachers who hardly reflected. The last group consisted of those who found the problems too difficult to reflect upon and those who used Torpedo to prepare for the National Mathematics Test and preferred to do so by drill and practice. As a conclusion, the study provides clues for improving Torpedo so that it invites more reflective self-study behaviour. For pre-service teachers who consider reflection valueless, however, self-study in a digital learning environment may be insufficient to change this attitude.
DOCUMENT
A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what extent does these individual problem solving activities really contribute to their mathematical problem solving ability? Developing mathematical problem solving ability requires reflective mathematical behaviour. Student teachers need to mathematize and generalize problems and problem approaches, and evaluate heuristics and problem solving processes. This demands self-confidence, motivation, cognition and metacognition. To what extent do student teachers show reflective behaviour during mathematical self-study and how can we explain their study behaviour? In this study 97 student teachers from seven different teacher education institutes worked on ten non-routine problems. They were motivated because the test-like problems gave them an impression of the test and enabled them to investigate whether they were already prepared well enough. This study also shows that student teachers preparing for the test were not focused on developing their mathematical problem solving ability. They did not know that this was the goal to strive for and how to aim for it. They lacked self-confidence and knowledge to mathematize problems and problem approaches, and to evaluate the problem solving process. These results indicate that student teachers do hardly develop their mathematical problem solving ability in self-study situations. This leaves a question for future research: What do student teachers need to improve their mathematical self-study behaviour? EAPRIL Proceedings, November 29 – December 1, 2017, Hämeenlinna, Finland
DOCUMENT
Cozmo is a real-life robot designed to interact with people playing games, making sounds, expressing emotions on a LCD screen and many other pre-programmable functions. We present the development and implementation of an educational platform for Cozmo mobile robot, with several features, including web server for user interface, computer vision, voice recognition, robot trajectory tracking control, among others. Functions for educational purposes were implemented, including mathematical operations, spelling, directions, and questions functions that gives more flexibility for the teachers to create their own scripts. In this system, a cloud voice recognition tool was implemented to improve the interactive system between Cozmo and the users. Also, a cloud computing vision system was used to perform object recognition using Cozmo's camera, to be applied on educational games. Other functions were created with the purpose of controlling the emotions and the motors of Cozmo to create more sophisticated scripts. To apply the functions on Cozmo robot, an interpreter algorithm was developed to translate the functions into Cozmo's programming language. To validate this work, the proposed framework was presented to several elementary school teachers (classes with students between 4 and 12). Students and teacher's impressions are reported in this text, and indicate that the proposed system can be a useful educational tool.
DOCUMENT
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorized according to a taxonomy of integration types synthesized from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support, and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.
DOCUMENT
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
Blended learning, a teaching format in which face-to-face and online learning is integrated, nowadays is an important development in education. Little is known, however, about its affordances for teacher education, and for domain specific didactical courses in particular. To investigate this topic, we carried out a design research project in which teacher educators engaged in a co-design process of developing and field-testing open online learning units for mathematics and science didactics. The preliminary results concern descriptions of the work processes by the design teams, of design heuristics, and of typical ways of collaborating. These findings are illustrated for the case of two of the designed online units on statistics didactics and mathematical thinking, respectively.
LINK
Providing users with a sense of place – related to a specific geographic location in which one is situated, or linked to a faraway place, or even giving place-like qualities to virtual spaces such as massively multiplayer online role-playing games – has been deemed central for several forms of digital interactions. In the past decade, studies from human-computer interaction and computer-supported cooperative work have specifically addressed this theme, but the scarcity of works of place specificity focusing expressly on interactive TV suggests a gap in the current research, whereas the latest developments in mobile TV would seem highly coherent with such topic. To contribute to closing this gap, some initial directions are suggested here by pointing at compatible treatments of the notion of place in related fields, for example, the design of pervasive urban games. Game designers and game scholars might provide operational concepts that help understanding the role and the potentialities of places for interactive TV. Two general types of artifacts are selected here: works that are anchored to the experience of faraway places and works that leverage the physical location in which the user is. Their analysis yields three design strategies (experience anchoring, place permeability, and distributed storytelling), offered here as “objects to think with” and to spur further research and design. By pointing at them and at other similar strategies, similarities between digital games, ITV products, and other similar artifacts emerge and allow us to speculatively trace possible future convergences.
LINK
Atherosclerosis is the development of lipid-laden plaques in arteries and is nowadays considered as an inflammatory disease. It has been shown that high doses of ionizing radiation, as used in radiotherapy, can increase the risk of development or progression of atherosclerosis. To elucidate the effects of radiation on atherosclerosis, we propose a mathematical model to describe radiation-promoted plaque evelopment. This model distinguishes itself from other models by combining plaque initiation and plaque growth, and by incorporating information from biological experiments. It is based on two consecutive processes: a probabilistic dose-dependent plaque initiation process, followed by deterministic plaque growth.
DOCUMENT
Terms like ‘big data’, ‘data science’, and ‘data visualisation’ have become buzzwords in recent years and are increasingly intertwined with journalism. Data visualisation may further blur the lines between science communication and graphic design. Our study is situated in these overlaps to compare the design of data visualisations in science news stories across four online news media platforms in South Africa and the United States. Our study contributes to an understanding of how well-considered data visualisations are tools for effective storytelling, and offers practical recommendations for using data visualisation in science communication efforts.
LINK
The purpose of the design-based research reported here is to show – as a proof of principle – how the idea of scaffolding can be used to support primary teachers in a professional development programme (PDP) to design and enact language-oriented science lessons. The PDP consisted of six sessions of 2.5 h each in which twelve primary school teachers took part over a period of six months. It centralised the language support that pupils need to reason during science lessons. In line with the idea of scaffolding, the structure of the PDP targeted teachers' gradual independence in designing lessons. The first research question is how scaffolding was enacted during the PDP. The analysis of video recordings, field notes, researcher and teacher logs, and teacher design assignments focused on the enactment of three scaffolding characteristics: diagnosis, responsiveness and handover to independence. The second research question concerns what teachers learned from the participation in the PDP that followed a scaffolding approach. The data analysis illustrates that these teachers had learned much in terms of designing and enacting language-oriented science lessons. In terms of diagnosis and responsiveness, our PDP approach was successful, but we problematise the ideal of scaffolding approaches focused on handover to independence.
DOCUMENT