Computational Thinking (CT), een onderdeel van digitale geletterdheid, is een vaardigheid die aandacht vraagt in het onderwijs. Bij docenten in opleiding (dio’s) is nog weinig kennis en expertise over CT, terwijl er mogelijkheden zijn om dit aspect van digitale geletterdheid te integreren in alle schoolvakken en hiermee die schoolvakken te verrijken. Drie lerarenopleiders (Nederlands/moderne vreemde talen, geschiedenis en wiskunde) hebben een vakoverstijgende cursus gegeven en onderzocht in een verkennend onderzoek. Het doel van de cursus is bij te dragen aan kennis en attitude met betrekking tot CT en CT te integreren in een lesontwerp. Deelnemers aan de cursus waren 21 tweedegraadsdocenten geschiedenis, wiskunde en talen die een masteropleiding tot eerstegraadsdocent volgden. In interdisciplinaire leerteams werkten de docenten in opleiding aan een beroepsproduct waarin ze een vakoverstijgende aanpak ontwierpen rond het thema CT. Verschillende data (vragenlijsten, learner reports en beroepsproducten) zijn verzameld om de opbrengst van de module te beschrijven. Uit de data blijkt dat kennis over CT is toegenomen en dat dio’s na het volgen van de cursus een positievere houding hebben ten opzichte van het integreren van CT in hun onderwijs. Uit de analyse van de beroepsproducten blijkt dat dio’s deels in staat zijn om CT te integreren in hun ontwerpen van (vakoverstijgend) onderwijs.
MULTIFILE
Learning mathematical thinking and reasoning is a main goal in mathematical education. Instructional tasks have an important role in fostering this learning. We introduce a learning sequence to approach the topic of integrals in secondary education to support students mathematical reasoning while participating in collaborative dialogue about the integral-as-accumulation-function. This is based on the notion of accumulation in general and the notion of accumulative distance function in particular. Through a case-study methodology we investigate how this approach elicits 11th grade students’ mathematical thinking and reasoning. The results show that the integral-as-accumulation-function has potential, since the notions of accumulation and accumulative function can provide a strong intuition for mathematical reasoning and engage students in mathematical dialogue. Implications of these results for task design and further research are discussed.
A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what extent does these individual problem solving activities really contribute to their mathematical problem solving ability? Developing mathematical problem solving ability requires reflective mathematical behaviour. Student teachers need to mathematize and generalize problems and problem approaches, and evaluate heuristics and problem solving processes. This demands self-confidence, motivation, cognition and metacognition. To what extent do student teachers show reflective behaviour during mathematical self-study and how can we explain their study behaviour? In this study 97 student teachers from seven different teacher education institutes worked on ten non-routine problems. They were motivated because the test-like problems gave them an impression of the test and enabled them to investigate whether they were already prepared well enough. This study also shows that student teachers preparing for the test were not focused on developing their mathematical problem solving ability. They did not know that this was the goal to strive for and how to aim for it. They lacked self-confidence and knowledge to mathematize problems and problem approaches, and to evaluate the problem solving process. These results indicate that student teachers do hardly develop their mathematical problem solving ability in self-study situations. This leaves a question for future research: What do student teachers need to improve their mathematical self-study behaviour? EAPRIL Proceedings, November 29 – December 1, 2017, Hämeenlinna, Finland