This study explores the psychometric qualities of the Relevance of History Measurement Scale (RHMS), a questionnaire designed to measure students’ beliefs about the relevance of history. Participants were 1459 Dutch secondary school students aged between 12 and 18. Data analysis revealed three reliable factors, compliant with our theoretical framework which defines three strands of relevance of history: relevance for building a personal identity, for citizenship, and for insight into ‘the human condition’. The convergent and known-groups validity of the RHMS was demonstrated. The collected data show that students find history more relevant as they grow older, with most progress taking place between 14 and 16. Out of the three strands of relevance, building a personal identity scores lowest in students’ appraisals. This study shows that the RHMS is psychometrically sound and can be used to evaluate effects of lesson interventions directed at enhancing the relevance of history to students.
Cities are confronted with more frequent heatwaves of increasing intensity discouraging people from using urban open spaces that are part of their daily lives. Climate proofing cities is an incremental process that should begin where it is needed using the most cost-efficient solutions to mitigate heat stress. However, for this to be achieved the factors that influence the thermal comfort of users, such as the layout of local spaces, their function and the way people use them needs to be identified first. There is currently little evidence available on the effectiveness of heat stress interventions in different types of urban space.The Cool Towns Heat Stress Measurement Protocol provides basic guidance to enable a full Thermal Comfort Assessment (TCA) to be conducted at street-level. Those involved in implementing climate adaptation strategies in urban areas, such as in redevelopments will find practical support to identify places where heat stress may be an issue and suggestions for effective mitigation measures. For others, such as project developers, and spatial designers such as landscape architects and urban planners it provides practical instructions on how to evaluate and provide evidence-based justification for the selection of different cooling interventions for example trees, water features, and shade sails, for climate proofing urban areas.
This study provides an overview of components of teacher identity that are found in quantitative measurement instruments; and reports on the psychometric quality of these measurement in- struments. Our search included studies that assessed components of teacher identity published in English-written, peer-reviewed articles between 2000 and 2018. We analyzed a total of 59 components in 20 studies. After we categorized the components on the basis of a substantive analysis, six main domains of teacher identity became apparent: Self-image, Motivation, Commitment, Self-efficacy, Task perception, and Job satisfaction. Whereas the overall psycho- metric properties of the measurement instruments used in the different studies were acceptable to good, our systematic overview revealed several conceptual and methodological issues that need to be resolved. The results may contribute to the further operationalization of the complex construct of teacher identity.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
The AR in Staged Entertainment project focuses on utilizing immersive technologies to strengthen performances and create resiliency in live events. In this project The Experiencelab at BUas explores this by comparing live as well as pre-recorded events that utilize Augmented Reality technology to provide an added layer to the experience of the user. Experiences will be measured among others through observational measurements using biometrics. This projects runs in the Experience lab of BUas with partners The Effenaar and 4DR Studio and is connected to the networks and goals related to Chronosphere, Digireal and Makerspace. Project is powered by Fieldlab Events (PPS / ClickNL)..