Background: INTELLiVENT-adaptive support ventilation (ASV) is an automated closed-loop mode of invasive ventilation for use in critically ill patients. INTELLiVENT-ASV automatically adjusts, without the intervention of the caregiver, ventilator settings to achieve the lowest work and force of breathing. Aims: The aim of this case series is to describe the specific adjustments of INTELLiVENT-ASV in patients with acute hypoxemic respiratory failure, who were intubated for invasive ventilation. Study design: We describe three patients with severe acute respiratory distress syndrome (ARDS) because of COVID-19 who received invasive ventilation in our intensive care unit (ICU) in the first year of the COVID-19 pandemic. Results: INTELLiVENT-ASV could be used successfully, but only after certain adjustments in the settings of the ventilator. Specifically, the high oxygen targets that are automatically chosen by INTELLiVENT-ASV when the lung condition ‘ARDS’ is ticked had to be lowered, and the titration ranges for positive end expiratory pressure (PEEP) and inspired oxygen fraction (FiO2) had to be narrowed. Conclusions: The challenges taught us how to adjust the ventilator settings so that INTELLiVENT-ASV could be used in successive COVID-19 ARDS patients, and we experienced the benefits of this closed-loop ventilation in clinical practice. Relevance to clinical practice: INTELLiVENT-ASV is attractive to use in clinical practice. It is safe and effective in providing lung-protective ventilation. A closely observing user always remains needed. INTELLiVENT-ASV has a strong potential to reduce the workload associated with ventilation because of the automated adjustments.
DOCUMENT
The COVID–19 pandemic led to local oxygen shortages worldwide. To gain a better understanding of oxygen consumption with different respiratory supportive therapies, we conducted an international multicenter observational study to determine the precise amount of oxygen consumption with high-flow nasal oxygen (HFNO) and with mechanical ventilation. A retrospective observational study was conducted in three intensive care units (ICUs) in the Netherlands and Spain. Patients were classified as HFNO patients or ventilated patients, according to the mode of oxygen supplementation with which a patient started. The primary endpoint was actual oxygen consumption; secondary endpoints were hourly and total oxygen consumption during the first two full calendar days. Of 275 patients, 147 started with HFNO and 128 with mechanical ventilation. Actual oxygen use was 4.9-fold higher in patients who started with HFNO than in patients who started with ventilation (median 14.2 [8.4–18.4] versus 2.9 [1.8–4.1] L/minute; mean difference 5 11.3 [95% CI 11.0–11.6] L/minute; P, 0.01). Hourly and total oxygen consumption were 4.8-fold (P, 0.01) and 4.8-fold (P, 0.01) higher. Actual oxygen consumption, hourly oxygen consumption, and total oxygen consumption are substantially higher in patients that start with HFNO compared with patients that start with mechanical ventilation. This information may help hospitals and ICUs predicting oxygen needs during high-demand periods and could guide decisions regarding the source of distribution of medical oxygen.
MULTIFILE
Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population. There is growing interest of MI-E use in invasively ventilated critically ill adults. We aimed to map current evidence on MI-E use in invasively ventilated critically ill adults. Two authors independently searched electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform; PROSPERO; Cochrane Library; ISI Web of Science; and International Clinical Trials Registry Platform between January 1990–April 2021. Inclusion criteria were (1) adult critically ill invasively ventilated subjects, (2) use of MI-E, (3) study design with original data, and (4) published from 1990 onward. Data were extracted by 2 authors independently using a bespoke extraction form. We used Mixed Methods Appraisal Tool to appraise risk of bias. Theoretical Domains Framework was used to interpret qualitative data. Of 3,090 citations identified, 28 citations were taken forward for data extraction. Main indications for MI-E use during invasive ventilation were presence of secretions and mucus plugging (13/28, 46%). Perceived contraindications related to use of high levels of positive pressure (18/28, 68%). Protocolized MI-E settings with a pressure of ±40 cm H2O were most commonly used, with detail on timing, flow, and frequency of prescription infrequently reported. Various outcomes were re-intubation rate, wet sputum weight, and pulmonary mechanics. Only 3 studies reported the occurrence of adverse events. From qualitative data, the main barrier to MI-E use in this subject group was lack of knowledge and skills. We concluded that there is little consistency in how MI-E is used and reported, and therefore, recommendations about best practices are not possible.
DOCUMENT