Background: Dermoscopy is known to increase the diagnostic accuracy of pigmented skin lesions (PSLs) when used by trained professionals. The effect of dermoscopy training on the diagnostic ability of dermal therapists (DTs) has not been studied so far. Objectives: This study aimed to investigate whether DTs, in comparison with general practitioners (GPs), benefited from a training programme including dermoscopy, in both their ability to differentiate between different forms of PSL and to assign the correct therapeutic strategy. Methods: In total, 24 DTs and 96 GPs attended a training programme on PSLs. Diagnostic skills as well as therapeutic strategy were assessed, prior to the training (pretest) and after the training (post-test) using clinical images alone, as well as after the addition of dermatoscopic images (integrated post-test). Bayesian hypothesis testing was used to determine statistical significance of differences between pretest, post-test and integrated post-test scores. Results: Both the DTs and the GPs demonstrated benefit from the training: at the integrated post-test, the median proportion of correctly diagnosed PSLs was 73% (range 30–90) for GPs and 63% (range 27–80) for DTs. A statistically significant difference between pretest results and integrated test results was seen, with a Bayes factor>100. At 12 percentage points higher, the GPs outperformed DTs in the accuracy of detecting PSLs. Conclusions: The study shows that a training programme focusing on PSLs while including dermoscopy positively impacts detection of PSLs by DTs and GPs. This training programme could form an integral part of the training of DTs in screening procedures, although additional research is needed.
DOCUMENT
Abstract Background Dermoscopy is known to increase the diagnostic accuracy of pigmented skin lesions (PSLs) when used by trained professionals. The effect of dermoscopy training on the diagnostic ability of dermal therapists (DTs) has not been studied so far. Objectives This study aimed to investigate whether DTs, in comparison with general practitioners (GPs), benefited from a training programme including dermoscopy, in both their ability to differentiate between different forms of PSL and to assign the correct therapeutic strategy. Methods In total, 24 DTs and 96 GPs attended a training programme on PSLs. Diagnostic skills as well as therapeutic strategy were assessed, prior to the training (pretest) and after the training (post-test) using clinical images alone, as well as after the addition of dermatoscopic images (integrated post-test). Bayesian hypothesis testing was used to determine statistical significance of differences between pretest, post-test and integrated post-test scores. Results Both the DTs and the GPs demonstrated benefit from the training: at the integrated post-test, the median proportion of correctly diagnosed PSLs was 73% (range 30–90) for GPs and 63% (range 27–80) for DTs. A statistically significant difference between pretest results and integrated test results was seen, with a Bayes factor>100. At 12 percentage points higher, the GPs outperformed DTs in the accuracy of detecting PSLs. Conclusions The study shows that a training programme focusing on PSLs while including dermoscopy positively impacts detection of PSLs by DTs and GPs. This training programme could form an integral part of the training of DTs in screening procedures, although additional research is needed
DOCUMENT
Rationale: Patients with cancer of the upper gastrointestinal tract or lung are more likely to present with malnutrition at diagnosis than, for instance, patients with melanoma. Low muscle mass is an indicator of malnutrition and can be determined by computed tomography (CT) analysis of the skeletal muscle index (SMI) at the 3rd lumbar vertebra (L3) level. However, CT images at L3 are not always available. At each vertebra level, we determined if type of cancer, i.e., head and neck cancer (HNC), oesophageal cancer (OC) or lung cancer (LC) vs. melanoma (ME) was associated with lower SMI. Methods: CT images from adult patients with HNC, OC, LC or ME were included and analyzed. Scans were performed in the patient’s initial staging after diagnosis. MIM software version 7.0.1 was used to contour the muscle areas for all vertebra levels. Skeletal muscle area was corrected for stature to calculate SMI (cm2/m2). We tested for the association of HNC, OC, or LC diagnosis vs ME with SMI by univariate and multivariate linear regression analyses. In the multivariate analyses, age (years), sex, and body mass index (BMI; kg/m2) were included. Betas (B;95%CI) were calculated and statistical significance was set at p
DOCUMENT
INTRODUCTION: In patients with cancer, low muscle mass has been associated with a higher risk of fatigue, poorer treatment outcomes, and mortality. To determine body composition with computed tomography (CT), measuring the muscle quantity at the level of lumbar 3 (L3) is suggested. However, in patients with cancer, CT imaging of the L3 level is not always available. Thus far, little is known about the extent to which other vertebra levels could be useful for measuring muscle status. In this study, we aimed to assess the correlation of the muscle quantity and quality between any vertebra level and L3 level in patients with various tumor localizations.METHODS: Two hundred-twenty Positron Emission Tomography (PET)-CT images of patients with four different tumor localizations were included: 1. head and neck ( n = 34), 2. esophagus ( n = 45), 3. lung ( n = 54), and 4. melanoma ( n = 87). From the whole body scan, 24 slices were used, i.e., one for each vertebra level. Two examiners contoured the muscles independently. After contouring, muscle quantity was estimated by calculating skeletal muscle area (SMA) and skeletal muscle index (SMI). Muscle quality was assessed by calculating muscle radiation attenuation (MRA). Pearson correlation coefficient was used to determine whether the other vertebra levels correlate with L3 level. RESULTS: For SMA, strong correlations were found between C1-C3 and L3, and C7-L5 and L3 ( r = 0.72-0.95). For SMI, strong correlations were found between the levels C1-C2, C7-T5, T7-L5, and L3 ( r = 0.70-0.93), respectively. For MRA, strong correlations were found between T1-L5 and L3 ( r = 0.71-0.95). DISCUSSION: For muscle quantity, the correlations between the cervical, thoracic, and lumbar levels are good, except for the cervical levels in patients with esophageal cancer. For muscle quality, the correlations between the other levels and L3 are good, except for the cervical levels in patients with melanoma. If visualization of L3 on the CT scan is absent, the other thoracic and lumbar vertebra levels could serve as a proxy to measure muscle quantity and quality in patients with head and neck, esophageal, lung cancer, and melanoma, whereas the cervical levels may be less reliable as a proxy in some patient groups.
DOCUMENT
The worldwide rise of skin cancer incidence rates increases the need to investigate ultraviolet radiation (UVR), as it is one of the main causes of skin cancer. 1 A ’ u to UVR varies depending on different factors such as the location of the individual and shielding effects. In this analysis, we evaluated wearables at different body positions measuring ultraviolet radiation when worn during daily activities at different locations. First, we analyzed which of the body positions provide the most robust measurements. We then devised a new measure, the horizon shielding factor, to evaluate the effect of horizon shielding and explored if high/low horizon shielding factor values coincide with particular geospatial attributes.
DOCUMENT
Patients with a hematologic malignancy increasingly prefer to be actively involved in treatment decision-making. Shared decision-making (SDM), a process that supports decision-making in preference-sensitive decisions, fits well with this need. A decision is preference sensitive when well-informed patients considerably differ in their trade-offs between the pros and cons of one option, or if more equal treatment options are available, including no treatment. SDM involves several steps: the first is choice talk, where the professional informs the patient that a decision needs to be made between the various relevant options and that the patient's opinion is important. The second is option talk, where the professional explains the options and their pros and cons. In the third step, preference talk, the professional and the patient discuss the patient's preferences. The professional supports the patient in deliberation. The final step is decision talk, where the professional and patient discuss the patient's decisional role preference, make or defer the decision and discuss possible follow-up.
DOCUMENT
Patients with a hematologic malignancy increasingly prefer to be actively involved in treatment decision-making.1,2 Shared decision-making (SDM), a process that supports decision-making in preference-sensitive decisions, fits well with this need. A decision is preference sensitive when well-informed patients considerably differ in their trade-offs between the pros and cons of one option, or if more equal treatment options are available, including no treatment. SDM involves several steps: the first is choice talk, where the professional informs the patient that a decision needs to be made between the various relevant options and that the patient's opinion is important. The second is option talk, where the professional explains the options and their pros and cons. In the third step, preference talk, the professional and the patient discuss the patient's preferences. The professional supports the patient in deliberation. The final step is decision talk, where the professional and patient discuss the patient's decisional role preference, make or defer the decision and discuss possible follow-up.3,4
DOCUMENT
OBJECTIVES: Assessment of malnutrition-related muscle depletion with computed tomography (CT) using skeletal muscle index (SMI) and muscle radiation attenuation (MRA) at the third lumbar vertebra is well validated. However, SMI and MRA values at other vertebral locations and interchangeability as parameters in different types of cancer are less known. We aimed to investigate whether adult patients with different types of cancer show differences in SMI and MRA at all vertebral levels.METHODS: We retrospectively analyzed CT images from 203 patients:120 with head and neck cancer, esophageal cancer, or lung cancer (HNC/EC/LC) and 83 with melanoma (ME). Univariate and multivariate linear regression analyses determined the association between SMI (cm²/m 2) and MRA (Hounsfield units) and cancer type at each vertebral level (significance corrected for multiple tests, P ≤ 0.002). The multivariate analyses included age, sex, cancer stage, comorbidity, CT protocol, and body mass index (BMI) (MRA analyses). RESULTS: SMI was lower in the HNC/EC/LC group versus the ME group at all vertebral levels, except C4 through C6 in the multivariate analyses. Female sex was associated with lower SMI at almost all levels. MRA was similar at most vertebral levels in both cancer groups but was lower at C1 through C4, T7, and L5 in the multivariate analyses. Use of contrast fluid and BMI were associated with higher MRA at all vertebral levels except T8 to T9 and C1 to C2, respectively.CONCLUSIONS: SMI, but not MRA, was lower in HNC/EC/LC patients than in ME patients at most vertebral levels. This indicates that low muscle mass presents itself across the various vertebral muscle areas. MRA may less consistently mark muscle depletion in malnourished patients.
DOCUMENT
Het ondergaan van een eenzijdige beenamputatie is een drastische chirurgische ingreep. Mensen, die na een amputatie in staat zijn om te lopen met een prothese, zijn functioneel onafhankelijker, en hebben een hogere kwaliteit van leven dan mensen die in een rolstoel belanden. Het is daarom niet verrassend dat het herwinnen van de oopvaardigheid één van de voornaamste doelen is tijdens de revalidatie. Doel van het onderzoek was om inzicht te krijgen in de factoren die het herwinnen en onderhouden van de loopvaardigheid van mensen na een beenamputatie beïnvloeden. Gebaseerd op de resultaten van het onderzoek kan geconcludeerd worden dat de fysieke capaciteit hierbij een belangrijke rol speelt. Een relatief kleine verbetering in de capaciteit kan al resulteren in significante en klinisch relevante verbeteringen. Hoewel geavanceerde prothesen de mechanische belasting van het lopen met een beenprothese verminderen, kan een ineffectieve balanscontrole deze positieve resultaten weer tenietdoen. ABSTRACT Undergoing a lower limb amputation is a life-changing surgery. The ability to walk greatly influences the subject's functional independence and quality of life. Not surprisingly, regaining walking ability is one of the primary goals during prosthetic rehabilitation. The primary aim of the research performed was to enhance our understanding of some of the factors that influence the ability to regain and maintain walking after a unilateral lower limb amputation. Based on the results we can deduce that a person's physical capacity plays an important role in their walking ability. Relatively small improvements in capacity could lead to significant and clinically relevant improvements in people's walking ability. Furthermore, results show that sophisticated prosthetic feet can reduce the mechanical load experienced when walking with a prosthesis. Interestingly, inefficient balance control strategies can undo any positive effect of these prostheses.
DOCUMENT