Within the framework of resource efficiency it is important to recycle and reusematerials, replace fossil fuel based products with bio-based alternatives and avoidthe use of toxic substances. New applications are being sought for locally grownbiomass. In the area of Groningen buildings need reinforcement to guarantee safetyfor its users, due to man-induced earthquakes. Plans are to combine the workneeded for reinforcement with the improvement of energy performance of thesebuildings. The idea is to use bio-based building materials, preferably grown andprocessed in the region.In this study it is investigated whether it is feasible to use Typha (a swap plant) as abasis for a bio-based insulation product. In order to start the activities necessary tofurther develop this idea into a commercial product and start a dedicated company,a number of important questions have to be answered in terms of feasibility. Thisstudy therefore aims at mapping economic, organisational and technical issues andassociated risks and possibilities. On the basis of these results a developmenttrajectory can be started to set up a dedicated supply chain with the appropriatepartners, research projects can be designed to develop the missing knowledge andthe required funding can be acquired.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.
Induced seismicity problems in the Groningen area caused by gas extraction have been one of the major challenges for the engineering and construction companies in the region and the Netherlands, not only because earthquake phenomena are new to the Dutch engineering community but also because the problem is very much complicated due to its social extents.The companies working in the structural engineering field in the region in different disciplines were forced to adapt very quickly to the earthquake related problems. It was a real size and investment problem for the SMEs, several of which benefited from this rush, however, only under certain conditions can this new skill set be sustainable. The SafeGo project aims mostly to help to facilitate sustainable development and build confidence for the SMEs in the field of earthquake engineering, rather than producing new scientific knowledge for them.SMEs are positioned in the seismic strengthening process either for collection of data or for providing and applying strengthening solutions. The proposed project aims to answer the question on how the “data-collection SMEs” can translate their data into more valuable assets to be used in the earthquake problem because the collection and the use of field data are vital. Furthermore, the question is also how the “strengthening SMEs” can verify and demonstrate their systems on a seismic shake table, because strengthening requires proven methodologies. The project goal is to combine these two central questions into findings on how the experimental and field data can efficiently be translated into suitable procedures, products and computer simulations for seismic assessment and strengthening of buildings, allowing SMEs to provide novel, integrated and accurate solutions not only in the region but also in international markets.