The aim of this meta-analysis was to analyze the experimental research into the effects of job-embedded professional development (JEPD) for teachers and student outcomes. Our meta-analysis of experimental studies of the effects JEPD, included 20 studies (with 79 experimental comparisons) at teacher level and 19 studies at student level (with 34 experimental comparisons). Analyses of the studies, representing 2,062 teachers and 21,425 students, revealed a significant, medium-to-large effect size at teacher level (ES= 0.699, SE= 0.092) and a significant medium effect at student level (ES = 0.523, SE= 0.137). Effects for teachers were smaller in studies with a large sample size. Effects for students were positively related to the length of the intervention. The positive outcomes at teacher and student level support the implementation and expansion of JEPD programsacross schools.
BACKGROUND: The evidence on prophylactic use of negative pressure wound therapy on primary closed incisional wounds (iNPWT) for the prevention of surgical site infections (SSI) is confusing and ambiguous. Implementation in daily practice is impaired by inconsistent recommendations in current international guidelines and published meta-analyses. More recently, multiple new randomised controlled trials (RCTs) have been published. We aimed to provide an overview of all meta-analyses and their characteristics; to conduct a new and up-to-date systematic review and meta-analysis and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment; and to explore the additive value of new RCTs with a trial sequential analysis (TSA).METHODS: PubMed, Embase and Cochrane CENTRAL databases were searched from database inception to October 24, 2022. We identified existing meta-analyses covering all surgical specialties and RCTs studying the effect of iNPWT compared with standard dressings in all types of surgery on the incidence of SSI, wound dehiscence, reoperation, seroma, hematoma, mortality, readmission rate, skin blistering, skin necrosis, pain, and adverse effects of the intervention. We calculated relative risks (RR) with corresponding 95% confidence intervals (CI) using a Mantel-Haenszel random-effects model. We assessed publication bias with a comparison-adjusted funnel plot. TSA was used to assess the risk of random error. The certainty of evidence was evaluated using the Cochrane Risk of Bias-2 (RoB2) tool and GRADE approach. This study is registered with PROSPERO, CRD42022312995.FINDINGS: We identified eight previously published general meta-analyses investigating iNPWT and compared their results to present meta-analysis. For the updated systematic review, 57 RCTs with 13,744 patients were included in the quantitative analysis for SSI, yielding a RR of 0.67 (95% CI: 0.59-0.76, I 2 = 21%) for iNPWT compared with standard dressing. Certainty of evidence was high. Compared with previous meta-analyses, the RR stabilised, and the confidence interval narrowed. In the TSA, the cumulative Z-curve crossed the trial sequential monitoring boundary for benefit, confirming the robustness of the summary effect estimate from the meta-analysis. INTERPRETATION: In this up-to-date meta-analysis, GRADE assessment shows high-certainty evidence that iNPWT is effective in reducing SSI, and uncertainty is less than in previous meta-analyses. TSA indicated that further trials are unlikely to change the effect estimate for the outcome SSI; therefore, if future research is to be conducted on iNPWT, it is crucial to consider what the findings will contribute to the existing robust evidence.FUNDING: Dutch Association for Quality Funds Medical Specialists.
PURPOSE: Fatigue is a common and potentially disabling symptom in patients with cancer. It can often be effectively reduced by exercise. Yet, effects of exercise interventions might differ across subgroups. We conducted a meta-analysis using individual patient data of randomized controlled trials (RCTs) to investigate moderators of exercise intervention effects on cancer-related fatigue.METHODS: We used individual patient data from 31 exercise RCTs worldwide, representing 4,366 patients, of whom 3,846 had complete fatigue data. We performed a one-step individual patient data meta-analysis, using linear mixed-effect models to analyze the effects of exercise interventions on fatigue (z-score) and to identify demographic, clinical, intervention- and exercise-related moderators. Models were adjusted for baseline fatigue and included a random intercept on study level to account for clustering of patients within studies. We identified potential moderators by testing their interaction with group allocation, using a likelihood ratio test.RESULTS: Exercise interventions had statistically significant beneficial effects on fatigue (β= -0.17 [95% confidence interval (CI) -0.22;-0.12]). There was no evidence of moderation by demographic or clinical characteristics. Supervised exercise interventions had significantly larger effects on fatigue than unsupervised exercise interventions (βdifference= -0.18 [95%CI -0.28;-0.08]). Supervised interventions with a duration ≤12 weeks showed larger effects on fatigue (β= -0.29 [95% CI -0.39;-0.20]) than supervised interventions with a longer duration. CONCLUSIONS: In this individual patient data meta-analysis, we found statistically significant beneficial effects of exercise interventions on fatigue, irrespective of demographic and clinical characteristics. These findings support a role for exercise, preferably supervised exercise interventions, in clinical practice. Reasons for differential effects in duration require further exploration.