Purpose of this longitudinal observational study was to (i) examine the change of daily physical activity in 28 adult kidney transplant recipients over the first 12 months following transplantation; and (ii) to examine the change in metabolic characteristics and renal function. Accelerometer-based daily physical activity and metabolic- and clinical characteristics were measured at six wk (T1), three months (T2), six months (T3) and 12 months (T4) following transplantation. Linear mixed effect analyses showed an increase in steps/d (T1 = 6326 ± 2906; T4 = 7562 ± 3785; F = 3.52; p = 0.02), but one yr after transplantation only 25% achieved the recommended 10 000 steps/d. There was no significant increase in minutes per day spent on moderate-to-vigorous intensity physical activity (T1 = 80.4 ± 63.6; T4 = 93.2 ± 55.1; F = 1.71; p = 0.17). Body mass index increased over time (T1 = 25.4 ± 3.2; T4 = 27.2 ± 3.8; F = 12.62; p < 0.001), mainly due to an increase in fat percentage (T1 = 30.3 ± 8.0; T4 = 34.0 ± 7.9; F = 14.63; p < 0.001). There was no significant change in renal function (F = 0.17; p = 0.92). Although the recipients increased physical activity, the majority did not meet the recommended levels of physical activity after one yr. In addition to the weight gain, this may result in negative health consequences. Therefore, it is important to develop strategies to support kidney transplant recipients to comply with healthy lifestyle recommendations, including regular physical activity.
LINK
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
Background and aims: Observational data indicate that diets rich in fruits and vegetables have a positive effect on inflammatory status, improve metabolic resilience and may protect against the development of non-communicable diseases. Nevertheless, experimental evidence demonstrating a causal relationship between nutrient intake (especially whole foods) and changes in metabolic health is scarce. This study investigated the pleiotropic effects of sulforaphane from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial function, inflammation and metabolic stress in healthy participants subjected to a standardized caloric challenge.Methods: In this double-blind, crossover, randomized, placebo-controlled trial 12 healthy participants were administered 16 g broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic parameters were measured in plasma before and 2 h after the caloric overload.Results: Administration of broccoli sprouts promoted an increase in levels of CCL-2 induced by caloric load (p = 0.017). Other biomarkers (sICAM-1, sVCAM-1, hs-CRP, and IL-10) individually showed insignificant tendencies toward increase with administration of sulforaphane. Combining all studied biomarkers into the systemic low-grade inflammation score further confirmed upregulation of the inflammatory activity (p = 0.087) after sulforaphane. No significant effects on biomarkers of metabolic stress were detected.Conclusion: This study has demonstrated that sulforaphane facilitated development of a mild pro-inflammatory state during the caloric challenge, which could be suggestive of the onset of the hormetic response induced by this phytonutrient. The use of integrative outcomes measures such as the systemic low-grade inflammation score can be viewed as a more robust approach to study the subtle and pleiotropic effects of phytonutrients.Clinical trial registration:www.clinicaltrials.gov, identifier NCT05146804.Keywords: biomarkers; diet; glucoraphanin; hormesis; inflammation; nutrients; phenotypic flexibility; sulforaphane.
MULTIFILE