Polymeren, waaronder plastics, kennen we allemaal uit ons dagelijks leven. Van de plastic draagtas tot computeronderdelen en kopjes. Allemaal worden deze polymeren vervaardigd uit aardolie en afgeleide producten. De producten zijn zeer nuttig en breed toepasbaar, mede door de gunstige eigenschappen zoals warmteweerbaarheid, stevigheid en waterdichtheid. Daarentegen kennen polymeren ook een keerzijde, zoals het niet of moeilijk afbreekbaar zijn in de natuurlijke omgeving en de nadelen van het gebruik van fossiele bronnen: hun eindigheid en de ongecontroleerde emissie van broeikasgassen die verband houdt met klimaatverandering. Dit is een zichtbaar probleem bij onder meer De Plasticsoep, waar geen of beperkte afbraak plaatsvindt van plastics in de oceaan. De zoektocht naar alternatieven is daarom volop aan de gang.
MULTIFILE
Wat zijn belangrijke succesfactoren om onderzoek, onderwijs en ondernemen bij elkaar te brengen, zó dat 'het klikt'. De uitdaging voor de toekomst van bedrijven in de smart factoryligt bij data science: het omzetten van ruwe (sensor) data naar (zinnige) informatie en kennis, waarmee producten en diensten verbeterd kunnen worden. Tevens programma van het symposium t.g.l. inauguratie 3 december 2015
MULTIFILE
Onder scheikundedocenten, chemiedidactici en lerarenopleiders is consensus over de centrale rol die het micro/macro concept zou moeten spelen in een nieuw te ontwerpen scheikundeprogramma voor havo en vwo. Bovendien kan worden geconcludeerd dat naast aandacht voor de plaats van het heen-en-weer denken in het te ontwikkelen lesmateriaal ook de wijze waarop scheikundedocenten in hun lessen dienen om te gaan met dit begrip belangrijk geacht wordt. Om ons een beeld te kunnen vormen van de didactische aspecten van het heen-en-weer denken is het van belang beter zicht te krijgen op de inzichten van scheikundedocenten in het gebruik van micro- en macro-scheikunde.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
What if living organisms communicated signals from the environment to us and thereby offered a sustainable alternative to electronic sensors? Within the field of biodesign, designers and scientists are collaborating with living organisms to produce new materials with ecological benefits. The company Hoekmine, in collaboration with designers, has been researching the potential of flavobacteria for producing sustainable colorants to be applied on everyday products. These non-harmful bacteria can change their form, texture and iridescent color in response to diverse environmental factors, such as humidity and temperature. Here, billions of cells are sensing and integrating the results as color. Therefore, Hoekmine envisions biosensors, which would minimize the use of increasingly demanded electronic sensors, and thus, the implementation of scarce and toxic materials. Developing a living sensor by hosting flavobacteria in a biobased and biodegradable flexible material offers opportunities for sustainable alternatives to electronic sensors. Aiming to take this concept to the next level, we propose a research collaboration between Avans, Hoekmine and a company specialized in biobased and biodegradable labels, Bio4Life. Together with this interdisciplinary team, we aim to bridge microbiology and embodiment design, and contribute to the development of a circular economy where digital technology and organic systems merge in the design of Living Circular Labels (LCLs). Throughout the project we will use an iterative approach between designing and testing LCLs that host living flavobacteria and additionally, methods for the end user to activate the bacteria’s growth at a given time.
Antimicrobial Resistance (AMR), the ability of micro-organisms to resist antibiotics, is associated with ~4.9 million deaths globally, reported in 2022. In the EU alone, more than 35.000 people die from antimicrobial-resistant infections annually, resulting in loss of life as well as €1.5Bn/year in healthcare costs and productivity losses. Rapid diagnostics tests are needed, current testing takes between 24 hours to a few days (for slow growing microorganisms), delaying patient treatment and severely impacting treatment outcomes. SoundCell BV have developed a technique (TRL5), for real-time detection of bacteria's viability in the presence of antibiotics. Nano-mechanical vibration of an ultrathin graphene sheet correlates to viability of bacteria immobilized on this sheet. Bacterial motion is transferred to this sheet, and movement of this sheet is tracked via a high-speed laser. Living bacteria produce a strong signal, which diminishes when antibiotics kill them. Unaffected by growth rates, results are achieved in one hour with this technique. This technology opens up possibility for rapid diagnostics of antibiotic resistance in patients with infections of slow growing pathogens (such as mycobacteria and yeast). In such cases the time to result is slowest, significantly delaying effective patient treatment. We aim to validate this technique in our clinical microbiology laboratory.