© 2025 SURF
Many studies have suggested that personal practical knowledge is essential for professional development. Recently, there has been growing recognition of the importance of teacher educators’ personal practical knowledge of ‘language’ for student learning development. However, the need for teacher educators to first understand their own language-oriented development in content-based classroom interaction has not received as much emphasis. The current intervention study investigates how eleven experienced teacher educators understand their language-oriented development through the control of task difficulty, small-group instruction and directed response questioning. Data were examined by conducting content and constant comparison analyses. The results showed that the intervention affected the educators’ language-oriented development, which in turn affected their awareness and decisions made to improve their methods of initiation and response during classroom interaction. The results call for more concrete ways to expend teacher educators’ practical knowledge of language to further develop and enhance their language-oriented teaching performance in content-based classroom interaction.
Covid has flooded our lives with online encounters and interactions. We work, minding our image on screen, or struggle to socialise in a hall of mirrors. Geert Lovink considers what we have lost and how we can reclaim our bodies, relationships and shared physical spaces.
MULTIFILE
In zijn inaugurele rede gaat Bert Plomp in op het belang van praktijkgericht onderzoek voor de verdere ontwikkeling en implementatie van zonnestroom en op het gebruik van zonnestroom voor schoon en stil vervoer en mobiliteit. Ook de ambities van het lectoraat en de hoofdlijnen en speerpunten van het onderzoek komen aan bod en de relaties met het onderwijs, het regionale bedrijfsleven en lopende projecten
Prompt design can be understood similarly to query design, as a prompt aiming to understand cultural dimensions in visual research, forcing the AI to make sense of ambiguity as a way to understand its training dataset and biases ( Niederer, S. and Colombo, G., ‘Visual Methods for Digital Research’). It moves away from prompting engineering and efforts to make “code-like” prompts that suppress ambiguity and prevent the AI from bringing biases to the surface. Our idea is to keep the ambiguity present in the image descriptions like in natural language and let it flow through different stages (degrees) of the broken telephone dynamics. This way we have less control over the result or selection of the ideal result and more questions about the dynamics implicit in the biases present in the results obtained.Different from textual or mathematical results, in which prompt chains or asking the AI to explain how it got the result might be enough, images and visual methods assisted by AI demand new methods to deal with that. Exploring and developing a new approach for it is the main goal of this research project, particularly interested in possible biases and unexplored patterns in AI’s image affordances.How could we detect small biases in describing images and creating based on descriptions when it comes to AI? What exactly do the words written by AI when describing an image stand for? When detecting a ‘human’ or ‘science’, for example, what elements or archetypes are invisible between prompting, and the image created or described?Turning an AI’s image description into a new image could help us to have a glimpse behind the scenes. In the broken telephone game, small misperceptions between telling and hearing, coding and decoding, produce big divergences in the final result - and the cultural factors in between have been largely studied. To amplify and understand possible biases, we could check how this new image would be described by AI, starting a broken telephone cycle. This process could shed light not just into the gap between AI image description and its capacity to reconstruct images using this description as part of prompts, but also illuminate biases and patterns in AI image description and creation based on description.It is in line with previous projects on image clustering and image prompt analysis (see reference links), and questions such as identification of AI image biases, cross AI models analysis, reverse engineering through prompts, image clustering, and analysis of large datasets of images from online image and video-based platforms.The experiment becomes even more relevant in light of the results from recent studies (Shumailov et al., 2024) that show that AI models trained on AI generated data will eventually collapse.To frame this analysis, the proposal from Munn, Magee and Arora (2023) titled Unmaking AI Imagemaking introduces three methodological approaches for investigating AI image models: Unmaking the ecosystem, Unmaking the data and Unmaking the outputs.First, the idea of ecosystem was taken for these authors to describe socio-technical implications that surround the AI models: the place where they have been developed; the owners, partners, or supporters; and their interests, goals, and impositions. “Research has already identified how these image models internalize toxic stereotypes (Birnhane 2021) and reproduce forms of gendered and ethnic bias (Luccioni 2023), to name just two issues” (Munn et al., 2023, p. 2).There are also differences between the different models that currently dominate the market. Although Stable Diffusion seems to be the most open due to its origin, when working with images with this model, biases appear even more quickly than in other models. “In this framing, Stable Diffusion becomes an internet-based tool, which can be used and abused by “the people,” rather than a corporate product, where responsibility is clear, quality must be ensured, and toxicity must be mitigated” (Munn et al., 2023, p. 5).To unmaking the data, it is important to ask ourselves about the source and interests for the extraction of the data used. According to the description of their project “Creating an Ad Library Political Observatory”, “This project aims to explore diverse approaches to analyze and visualize the data from Meta’s ad library, which includes Instagram, Facebook, and other Meta products, using LLMs. The ultimate goal is to enhance the Ad Library Political Observatory, a tool we are developing to monitor Meta’s ad business.” That is to say, the images were taken from political advertising on the social network Facebook, as part of an observation process that seeks to make evident the investments in advertising around politics. These are prepared images in terms of what is seen in the background of the image, the position and posture of the characters, the visible objects. In general, we could say that we are dealing with staged images. This is important since the initial information that describes the AI is in itself a representation, a visual creation.
LINK
Een van de instrumenten voor de bepaling van de kwaliteit en van de aanwezigheid van opgetreden schade vormt het niet-destructief onderzoek (NDO), waarvan vele uitvoeringsvormen zijn ontwikkeld en waaraan binnen de kaders van de wetgeving en de in gebruik zijnde Codes zowel aan de apparatuur als aan de bediening eisen worden gesteld. Zo moeten ook de uitvoerders van NDO in de praktijk gecertificeerd zijn.
The NDT methods currently used in aviation MRO are predominantly labour-intensive and time-consuming processes performed by human operators throughout the lifespan of an aircraft. These techniques are time-consuming, require perpetual training and are highly dependent on the operator's skills. Thus, there is a growing need for more efficient, automated, and accurate NDT tools that will be able to provide faster and less labour-intensive assessments. This study presents a novel, non-contact, automated NDT scanning system under development, which aims to reduce the inspection time significantly. The proposed technique uses a non-contact, Lamb wave-based approach. A further essential step during the process is to use an automated positioning system. Thickness mapping and defect detection in metal and composite structures have been performed. A local thickness map in the order of 1 mm has been obtained through a fast-scanning process with comparable resolution to conventional inspection techniques. Overall, it is currently concluded that the proposed NDT scanner is a promising tool that potentially can reduce the inspection time while also having the potential to automate the damage assessment resulting in more efficient MRO inspection processes.
Electromagnetic Articulography (EMA) is a technology created over two decades ago. EMA enables to acquire spatiotemporal data from sensors placed on the tongue in order to obtain information about the positioning of the tongue, its shape and dynamics during vocalizations of various sounds of human speech. The articulograph is often supported by an audio recorder and a vision system. In this paper, a novel system integrating EMA, audio and visual data recording is presented. The articulatory data was obtained with a Carsten's AG500 articulograph. The vision system was constructed from 3 high-speed cameras (Gazelle GZL-CL-22C5M-C) manufactured by Point Grey. The cameras registered movements of markers attached to the face of the speakers. The audio recorder consisted of a 16-channel microphone array and an electronic device that registered and processed signals from the microphones. The microphone array made it possible to map sources of sound propagation on the speaker’s face. The simultaneous recording of signals from EMA, the video system and the audio recorder is controlled from a computer with a host program and is supported by a synchronizer. The electromagnetic articulograph registers signals from EMA sensors which return their spatiotemporal positions with the sampling frequency of 200 Hz. The readouts of the spatial positioning of sensors attached to the tongue provide information about its shape and movements in time. There are three cameras registering the movements of external articulators and organs (e.g. lips, jaw and cheeks) from the front and side views. The cameras register movies with the frame rate of 200 FPS. The circular microphone array with 16 microphones records 16-channel audio with 96 kHz sampling rate and 16 bit resolution. During the recording sessions, the participants read aloud words that are displayed on the screen. An application on the host computer sends commands to AG500 which in turn generates synchronization signals in the TTL standard to external devices. These signals are used for activating the audio recorder and the synchronizer in the video system. Articulographic and simple acoustic analysis is performed with created in MATLAB software called phonEMAtool. This software is very useful and ergonomic for fast feature extraction of tongue movements during speech. The application allows to display simultaneously: speech waveform, EMA sensors position and orientation, phonetic segmentation. Before an analysis, the data from AG500 are pre-processed twice with a Savitzky-Golay filter so as to remove undesirable noise. In the paper an exemplary analysis performed by the phonEMAtool of particular articulatory gestures in the articulation of [m] in the Polish word Tamara is presented. Another analysis is beamforming of audio signals in order to obtain three-dimensional acoustic field distribution images. In the paper an example of this technique applied to the analysis of the nasal consonant in the word Tamara [tamara] has been shown. Analysis indicated that the highest intensity of the acoustic field during the pronunciation of the consonant [m] occurs in the nose region and for vowel [a], the highest intensity is observed in the mouth. Due to movement registration of facial markers the reconstruction of positions of external articulators can be obtained. With additional face triangulation using Delaunay algorithm some differences between positions of external articulators can be easily tracked. The measurement system described in this paper is effective and allows for an examination of the vocal tract in 3 ways: tongue movements, acoustic field intensity distribution and external articulator movements. A particularly useful tool is the dedicated acoustic camera based on multi-channel audio recorder and a microphone array. The results obtained with this equipment are unique and show great research and application potential.
Electromagnetic articulography (EMA) is one of the instrumental phonetic research methods used for recording and assessing articulatory movements. Usually, articulographic data are analysed together with standard audio recordings. This paper, however, demonstrates how coupling the articulograph with devices providing other types of information may be used in more advanced speech research. A novel measurement system is presented that consists of the AG 500 electromagnetic articulograph, a 16-channel microphone array with a dedicated audio recorder and a video module consisting of 3 high-speed cameras. It is argued that synchronization of all these devices allows for comparative analyses of results obtained with the three components. To complement the description of the system, the article presents innovative data analysis techniques developed by the authors as well as preliminary results of the system’s accuracy.