Data mining seems to be a promising way to tackle the problem of unpredictability in MRO organizations. The Amsterdam University of Applied Sciences therefore cooperated with the aviation industry for a two-year applied research project exploring the possibilities of data mining in this area. Researchers studied more than 25 cases at eight different MRO enterprises, applying a CRISP-DM methodology as a structural guideline throughout the project. They explored, prepared and combined MRO data, flight data and external data, and used statistical and machine learning methods to visualize, analyse and predict maintenance. They also used the individual case studies to make predictions about the duration and costs of planned maintenance tasks, turnaround time and useful life of parts. Challenges presented by the case studies included time-consuming data preparation, access restrictions to external data-sources and the still-limited data science skills in companies. Recommendations were made in terms of ways to implement data mining – and ways to overcome the related challenges – in MRO. Overall, the research project has delivered promising proofs of concept and pilot implementations
During the COVID-19 pandemic, the bidirectional relationship between policy and data reliability has been a challenge for researchers of the local municipal health services. Policy decisions on population specific test locations and selective registration of negative test results led to population differences in data quality. This hampered the calculation of reliable population specific infection rates needed to develop proper data driven public health policy. https://doi.org/10.1007/s12508-023-00377-y
A practical framework for the implementation of digitalization entitled the “Data Analytic Capability Wheel” was presented. The aspects encompassed by this framework included data quality, data analytics, IT infrastructure, processes, employee knowledge and skills, and management.
The reclaiming of street spaces for pedestrians during the COVID-19 pandemic, such as on Witte de Withstraat in Rotterdam, appears to have multiple benefits: It allows people to escape the potentially infected indoor air, limits accessibility for cars and reduces emissions. Before ordering their coffee or food, people may want to check one of the many wind and weather apps, such as windy.com: These apps display the air quality at any given time, including, for example, the amount of nitrogen dioxide (NO2), a gas responsible for an increasing number of health issues, particularly respiratory and cardiovascular diseases. Ships and heavy industry in the nearby Port of Rotterdam, Europe’s largest seaport, exacerbate air pollution in the region. Not surprisingly, in 2020 Rotterdam was ranked as one of the unhealthiest cities in the Netherlands, according to research on the health of cities conducted by Arcadis. Reducing air pollution is a key target for the Port Authority and the City of Rotterdam. Missing, however, is widespread awareness among citizens about how air pollution links to socio-spatial development, and thus to the future of the port city cluster of Rotterdam. To encourage awareness and counter the problem of "out of sight - out of mind," filmmaker Entrop&DeZwartFIlms together with ONSTV/NostalgieNet, and Rotterdam Veldakademie, are collaborating with historians of the built environment and computer science and public health from TU Delft and Erasmus University working on a spatial data platform to visualize air pollution dynamics and socio-economic datasets in the Rotterdam region. Following discussion of findings with key stakeholders, we will make a pilot TV-documentary. The documentary, discussed first with Rotterdam citizens, will set the stage for more documentaries on European and international cities, focusing on the health effects—positive and negative—of living and working near ports in the past, present, and future.
The automobile industry is presently going through a rapid transformation towards autonomous driving. Nearly all vehicle manufacturers (such as Mercedes Benz, Tesla, BMW) have commercial products, promising some level of vehicle automation. Even though the safe and reliable introduction of technology depends on the quality standards and certification process, but the focus is primarily on the introduction of (uncertified) technology and not on developing knowledge for certification. Both industry and governments see the lack of knowledge about certification, which can ensure the safety of autonomous technology and thus will guarantee the safety of the driver, passenger, and environment. HAN-AR recognized the lack of knowledge and the need for novel certification methodology for emerging vehicle technology and initiated the PRAUTOCOL project together with its SME partners. The PRAUTOCOL project investigated certification methodology for two use-cases: certification for automated highway overtaking pilot; and certification for automatic valet parking. The PRAUTOCOL research is conducted in two parallel streams: certification of the driver by human factors experts and certification of vehicle by technology experts. The results from both streams are published and presented in respective but limited target groups. Also, an overview of the PRAUTOCOL certification methodology is missing, which can enable its translation to different use-cases of automated technology (other than the used ones). Therefore, to realize a better pass-through of PRAUTOCOL's results to a broader audience, the top-up is required. Firstly, to write a (peer-reviewed) Open Access article, focusing on the application and translation of PRAUTOCOL's methodology to other automated technology use-cases. Secondly, to write a journal article, focusing on the validation of automatic highway overtaking system using naturalistic driving data. Thirdly, to organize a workshop to present PRAUTOCOL's results (valorization) to industrial, research, and government representatives and to discuss a follow-up initiative.
In summer 2020, part of a quay wall in Amsterdam collapsed, and in 2010, construction for a parking lot in Amsterdam was hindered by old sewage lines. New sustainable electric systems are being built on top of the foundations of old windmills, in places where industry thrived in the 19th century. All these examples have one point in common: They involve largely unknown and invisible historic underground structures in a densely built historic city. We argue that truly circular building practices in old cities require smart interfaces that allow the circular use of data from the past when planning the future. The continuous use and reuse of the same plots of land stands in stark contrast with the discontinuity and dispersed nature of project-oriented information. Construction and data technology improves, but information about the past is incomplete. We have to break through the lack of historic continuity of data to make building practices truly circular. Future-oriented construction in Amsterdam requires historic knowledge and continuous documentation of interventions and findings over time. A web portal will bring together a range of diverse public and private, professional and citizen stakeholders, each with their own interests and needs. Two creative industry stakeholders, Yume interactive (Yume) and publisher NAI010, come together to work with a major engineering office (Witteveen+Bos), the AMS Institute, the office of Engineering of the Municipality of Amsterdam, UNESCO NL and two faculties of Delft University of Technology (Architecture and Computer Science) to inventorize historic datasets on the Amsterdam underground. The team will connect all the relevant stakeholders to develop a pilot methodology and a web portal connecting historic data sets for use in contemporary and future design. A book publication will document the process and outcomes, highlighting the need for circular practices that tie past, present and future.