Rond 1980 werd personeelsontwikkeling in Nederland vooral geadopteerddoor een andere discipline, onderwijskunde, waardoor veel nadruk werd gelegd op bedrijfsopleidingen. Die werden gezien als ‘beroepsonderwijs in pocketformaat’: nascholing in cursusverband kreeg mede daardoor een dominante plaats binnen het geheel van HRD-praktijken(Thijssen, 2003). Sindsdien is er veel veranderd. De pas later ook in Nederland doorgebroken term Human Resource Development is daar een exponent van. De veelvormigheid van HRD-activiteiten is toegenomen net als het besef dat investeren in HRD noodzakelijk is. De meest ingrijpende contextuele verandering voor HRD-praktijken betreft de arbeidsmarktturbulentie die met name is ontstaan door de behoefte van organisaties aan personele flexibiliteit, waardoor lifetime employment een marginaal fenomeen is geworden. In verband daarmee is een omslag waar te nemen van een traditioneel naar een modern psychologisch contract, hetgeen met name inhoudt dat het initiatief en de verantwoordelijkheid voor ontwikkelingsinvesteringen niet meer zo zeer bij de arbeidsorganisatie ligt, maar primair bij het individu. Tegen deze achtergrond zal in het navolgende gedeelte worden ingegaan op drie HRD-deeldomeinen: loopbaanmanagement, talent management en management development. Daarbij wordt naast de betekenis van deze deeldomeinen aandacht besteed aan diverse ontwikkelingen in het recente verleden en aan enkele belangrijke agendapunten als verbinding naar de toekomst
Organizations feel an urgency to develop and implement applications based on foundation models: AI-models that have been trained on large-scale general data and can be finetuned to domain-specific tasks. In this process organizations face many questions, regarding model training and deployment, but also concerning added business value, implementation risks and governance. They express a need for guidance to answer these questions in a suitable and responsible way. We intend to offer such guidance by the question matrix presented in this paper. The question matrix is adjusted from the model card, to match well with development of AIapplications rather than AI-models. First pilots with the question matrix revealed that it elicited discussions among developers and helped developers explicate their choices and intentions during development.
TheUniversity of Twente, SaxionUniversityofAppliedSciences, ROCofTwente(vocationaleducation), centre of expertise TechYourFuture and the H2Hub Twente, in which various regional hydrogen interested corporations are involved, work together to shape a learning community (LC) for the development of innovative hydrogen technology. The cooperation between company employees, researchers and students provides a means to jointly work on solutions for real-life problems within the energy transition. This involves a cross-chain collaboration of technical programs, professorships and (field) experts, supported by human capital specialists. In the LC, a decentralized hydrogen production unit with storage of green hydrogen is designed and built. The main question for this research is: how can the design and construction process of an alkaline electrolyzer be arranged in a challenge based LC in which students, company employees (specialists) and researchers from the three educational institutions can learn, innovate, build-up knowledge and benefit? In this project the concept of a LC is developed and implemented in collaboration with companies and knowledge institutions at different levels. The concrete steps are described below: 1. Joint session between Human Resource and Development (HRD) specialists and engineers/researchers to explore the important factors for a LC. The results of this session will be incorporated into a blueprint for the LC by the human capital specialists. 2. The project is carried out according to the agreements of the blueprint. The blueprint is continuously updated based on the periodic reflections and observed points for improvement. 3. Impact interviews and periodic reflection review the proceeding of the LC in this engineering process. The first impact interview reveals that the concept of the LC is very beneficial for companies. It increases overall knowledge on hydrogen systems, promotes cooperation and connection with other companies and aids to their market proposition as well. Students get the opportunity to work in close contact with multiple company professionals and build up a network of their own. Also the cooperation with students from different disciplines broadens their view as a professional, something which is difficult to achieve in a mono-disciplinary project.
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.