Professionals' willingness to change is a necessity for successful implementation of changes in the organisation. This study focused on the influence of a transformational leadership style on professionals' willingness to change. This multiple case study was performed in three project management organisations that had recently implemented a new business information system. The research data were obtained through both qualitative and quantitative data collection. The qualitative investigation revealed that through leading by good example a manager has a positive influence on their employees' willingness to change. However, the quantitative investigation showed that there is no relationship between transformational leadership and the motivational factors of willingness to change. Finally, the study showed that the most important factors of employees' willingness to change are timing, involvement, emotions, necessity, and added value
While smart maintenance is gaining popularity in professional engineering and construction management practice, little is known about the dimensions of its maturity. It is assumed that the complex networked environment of maintenance and the rise of data-driven methodologies require a different perspective on maintenance. This paper identifies maturity dimensions for smart maintenance of constructed assets that can be measured. A research design based on two opposite cases is used and data from multiple sources is collected in four embedded case studies in corporate facility management organizations. Through coding data in several cross-case analyses, a maturity framework is designed that is validated through expert consultation. The proposed smart maintenance maturity framework includes technological dimensions (e.g., tracking and tracing) as well as behavioral dimensions (e.g., culture). It presents a new and encompassing theoretical perspective on client leadership in digital construction, integrating innovation in both construction and maintenance supply networks.
Individuals with mild intellectual disabilities or borderline intellectual functioning are at increased risk to develop a substance use disorder—however, effective treatment programs adapted to this target group are scarce. This study evaluated the effectiveness of Take it Personal!+ in individuals with mild intellectual disabilities or borderline intellectual functioning and substance use disorder. Take it Personal!+ is a personalized treatment based on motivational interviewing and cognitive-behavioral therapy supported by an mHealth application. Data were collected in a nonconcurrent multiple baseline single-case experimental design across individuals with four phases (i.e., baseline, treatment, posttreatment, and follow-up). Twelve participants were randomly allocated to baseline lengths varying between 7 and 11 days. Substance use quantity was assessed during baseline, treatment, and posttreatment with a daily survey using a mobile application. Visual analysis was supported with statistical analysis of the daily surveys by calculating three effect size measures in 10 participants (two participants were excluded from this analysis due to a compliance rate below 50%). Secondary, substance use severity was assessed with standardized questionnaires at baseline, posttreatment, and follow-up and analyzed by calculating the Reliable Change Index. Based on visual analysis of the daily surveys, 10 out of 12 participants showed a decrease in mean substance use quantity from baseline to treatment and, if posttreatment data were available, to posttreatment. Statistical analysis showed an effect of Take it Personal!+ in terms of a decrease in daily substance use in 8 of 10 participants from baseline to treatment and if posttreatment data were available, also to posttreatment. In addition, data of the standardized questionnaires showed a decrease in substance use severity in 8 of 12 participants. These results support the effectiveness of Take it Personal!+ in decreasing substance use in individuals with mild intellectual disabilities or borderline intellectual functioning.
Het project ‘Design Thinking bij Nationale Militaire Inzet Koninklijke Landmacht’- Fase1 (NMIKL fasse1) is gericht op nieuwe creatieve methoden om complexe vraagstukken van de Landmacht Nationale Inzet (LNI) op te lossen. Binnen het convenant tussen de Hogeschool Utrecht (HU) en LNI heeft LNI haar hulpvraag voorgelegd om de vele complexe vraagstukken van diverse aard te helpen oplossen. Het ontbreekt LNI aan een methode om de Inmiddels 75 benoemde complexe vraagstukken met ingewikkelde onderlinge relaties op te pakken. Dergelijke complexe vraagstukken worden ‘wicked problems’ genoemd. Ze bevatten gestapelde problematiek, zoals technologische uitdagingen, de factoren van duurzaamheid, klimaat en vergrijzing van de beroepsbevolking. Daar bovenop komt de toegenomen bedreiging van vrede in Europa. Om een gedegen vraagarticulatie voor de meest belangrijke LNI vraagstukken op te stellen, is een aanpak gewenst, die bij deze ‘wicked problems’ past. Suit-case (een HU-MKB-partner) is opgericht door TU Delft studenten, die gespecialiseerd zijn in het aanpakken van complexe vraagstukken met creatieve methoden, zoals ‘design thinking’ en ‘transition theory management’. Suit-case wil graag haar aanpak geschikt maken voor hiërarchisch gestructureerde organisaties zoals Defensie, zodat de techniek beschikbaar komt voor dergelijke bedrijven( zoals Shell, NS, enzovoorts). Ook deze bedrijven hebben te maken met de maatschappelijke uitdagingen en ‘wicked problems’ en hebben gezien de klimaat-doelstellingen versnelling in hun transitie-proces en daarmee vraagoplossendvermogen nodig. Co-Design van de HU heeft veel ervaring met DT binnen de zorg. Samen gaan we DT beter beschikbaar maken voor grote bedrijven met een hiërarchische structuur zodat ook zij complexe vraagstukken innovatief kunnen oppakken. Door minimaal drie LNI-vraagstukken te doorlopen wordt de ontwikkelde aanpak getest en leert LNI de methoden in de praktijk toe te passen. Het resultaat is een nieuwe, methodologisch onderbouwde vraagarticulatie-aanpak voor complexe vraagstukken voor hiërarchisch georganiseerde organisaties zoals LNI en drie goede vraagarticulaties met aanpak.
Intelligent technology in automotive has a disrupting impact on the way modern automobiles are being developed. New technology not only has brought complexity to already existing information in the car (digitization of driver instruments) but also brings new external information to the driver on how to optimize the driving style amongst others from the perspective of communicating with infrastructures (Vehicle to Infrastructure communication (V2I)). The amount of information that a driver has to process in modern vehicles is increasing rapidly due to the introduction of multiple displays and new external information sources. An information overload lies awaiting, yet current Human Machine Interface (HMI) designs and the corresponding legal frameworks lag behind. Currently, many initiatives (Pratijkproef Amsterdam, Concorda) are being developed with respect to V2I, amongst others with Rijkswaterstaat, North Holland and Brabant. In these initiatives, SME’s, like V-Tron, focus on the development of specific V2I hardware. Yet in the field of HMI’s these SME’s need universities (HAN University of Applied Science, Rhine Waal University of Applied Science) and industrial designers (Yellow Chess) to help them with design guidelines and concept HMI’s. We propose to develop first guidelines on possible new human-machine interfaces. Additionally, we will show the advantages of HMI’s that go further than current legal requirements. Therefore, this research will focus on design guidelines averting the information overload. We show two HMI’s that combine regular driver information with V2I information of a Green Light Optimized Speed Advise (GLOSA) use case. The HMI’s will be evaluated on a high level (focus groups and a small simulator study). The KIEM results in two publications. In a plenary meeting with experts, the guidelines and the limitations of current legal requirements will be discussed. The KIEM will lead to a new consortium to extend the research.
This proposal is a resubmission of an earlier proposal (Dossier nr: GOCH.KIEM.KGC02.079) which was not approved because of the too ambitious planning. As advised by the commission, the focus is kept only on the recycling of the mattress cover. The Netherlands has 180,000+ waterproof mattresses in the healthcare sector, of which yearly 40,000+ mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these waterproof mattresses in the consumer sector as well. Considering the complex nature of functional mattresses, these valuable resources are partly incinerated. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials in five key economic sectors including ‘consumer products’ by 2030. Within the scope of this research, Saxion together with partners (CFC BV, Deron BV, MRE BV & Klieverik Heli BV) will bring emphasis on Recycling (sustainable chemistry) of mattress covers. Other aspects such as reuse and re-designing are beyond the scope of this project proposal, for which a bigger consortium will be built during the course of this project. A case under study is a water-impermeable mattress cover made of 100% polyester with polyurethane (PU) coatings. The goal is to enable the circular use of textiles with (multilayer) ‘coatings’, which are not recyclable yet. These ‘coatings’ comprise functional coatings as well as adhesion layers. Therefore, novel triggerable molecular systems and the corresponding recycling processes will be developed. The coatings will be activated by a specific trigger (bio)-chemical solvation, heat, pressure, humidity, microwave, or combination of thereof. The emphasis is to develop a scalable coating removal process. Learnings will be used to build larger (inter)-national consortia to develop multiple industry closed-loop solutions required for 100% mattress circularity with desired functionality. The generated knowledge will be used for education at Saxion.