Background & aims: Optimal nutritional support during the acute phase of critical illness remains controversial. We hypothesized that patients with low skeletal muscle area and -density may specifically benefit from early high protein intake. Aim of the present study was to determine the association between early protein intake (day 2–4) and mortality in critically ill intensive care unit (ICU) patients with normal skeletal muscle area, low skeletal muscle area, or combined low skeletal muscle area and -density. Methods: Retrospective database study in mechanically ventilated, adult critically ill patients with an abdominal CT-scan suitable for skeletal muscle assessment around ICU admission, admitted from January 2004 to January 2016 (n = 739). Patients received protocolized nutrition with protein target 1.2–1.5 g/kg/day. Skeletal muscle area and -density were assessed on abdominal CT-scans at the 3rd lumbar vertebra level using previously defined cut-offs. Results: Of 739 included patients (mean age 58 years, 483 male (65%), APACHE II score 23), 294 (40%) were admitted with normal skeletal muscle area and 445 (60%) with low skeletal muscle area. Two hundred (45% of the low skeletal muscle area group) had combined low skeletal muscle area and -density. In the normal skeletal muscle area group, no significant associations were found. In the low skeletal muscle area group, higher early protein intake was associated with lower 60-day mortality (adjusted hazard ratio (HR) per 0.1 g/kg/day 0.82, 95%CI 0.73–0.94) and lower 6-month mortality (HR 0.88, 95%CI 0.79–0.98). Similar associations were found in the combined low skeletal muscle area and -density subgroup (HR 0.76, 95%CI 0.64–0.90 for 60-day mortality and HR 0.80, 95%CI 0.68–0.93 for 6-month mortality). Conclusions: Early high protein intake is associated with lower mortality in critically ill patients with low skeletal muscle area and -density, but not in patients with normal skeletal muscle area on admission. These findings may be a further step to personalized nutrition, although randomized studies are needed to assess causality.
DOCUMENT
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
DOCUMENT
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
DOCUMENT
Generalized loss of muscle mass is associated with increased morbidity and mortality in patients with cancer. The gold standard to measure muscle mass is by using computed tomography (CT). However, the aim of this prospective observational cohort study was to determine whether point-of-care ultrasound (POCUS) could be an easy-to-use, bedside measurement alternative to evaluate muscle status. Patients scheduled for major abdominal cancer surgery with a recent preoperative CT scan available were included. POCUS was used to measure the muscle thickness of mm. biceps brachii, mm. recti femoris, and mm. vasti intermedius 1 day prior to surgery. The total skeletal muscle index (SMI) was derived from patients’ abdominal CT scan at the third lumbar level. Muscle force of the upper and lower extremities was measured using a handheld dynamometer. A total of 165 patients were included (55% male; 65 ± 12 years). All POCUS measurements of muscle thickness had a statistically significant correlation with CT-derived SMI (r ≥ 0.48; p < 0.001). The strongest correlation between POCUS muscle measurements and SMI was observed when all POCUS muscle groups were added together (r = 0.73; p < 0.001). Muscle strength had a stronger correlation with POCUS-measured muscle thickness than with CT-derived SMI. To conclude, this study indicated a strong correlation between combined muscle thickness measurements performed by POCUS- and CT-derived SMI and measurements of muscle strength. These results suggest that handheld ultrasound is a valid tool for the assessment of skeletal muscle status.
DOCUMENT
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
DOCUMENT
OBJECTIVES: Amplitude-mode (A-mode) ultrasonography is a promising technique to monitor loss and recovery of skeletal muscle in patients with burns. However, its clinimetric properties are unknown. Therefore, we determined its feasibility, interrater, and intrarater reliability, and clinical utility.METHODS: Skeletal muscle thickness of upper arms and legs was assessed longitudinally in hospitalized adult patients with ≥ 5 % total body surface area (TBSA) burns, by pairs of two out of five raters. Feasibility was evaluated by % successful assessments, reliability by intra-class correlation coefficients (ICCs), and clinical utility by smallest detectable change (SDC).RESULTS: Thirty-four patients participated (77 % male; mean age 48 ± 17 y, median TBSA burned 12 % [IQR 7-19]). Images were acquired on 69 % of planned occasions, and 89 % of images could be analyzed. Overall interrater ICCs were ≥ 0.84 (for pairs: 0.63-0.99) and intrarater ICCs were ≥ 0.95 (for pairs: 0.45-0.99). The overall interrater SDC was ≤ 33 % of the measured mean (for pairs: 3-52 %), while intrarater SDC was ≤ 20 % (for pairs: 3-48 %). All five raters could measure legs with moderate to excellent reliability, whereas for arms some demonstrated poor reliability.CONCLUSION: A-mode ultrasonography assessment of skeletal muscle in patients with burns is feasible. However, reliability and clinical utility are rater-dependent; therefore we recommend assessments by the same rater.
DOCUMENT
BACKGROUND: Muscle quantity at intensive care unit (ICU) admission has been independently associated with mortality. In addition to quantity, muscle quality may be important for survival. Muscle quality is influenced by fatty infiltration or myosteatosis, which can be assessed on computed tomography (CT) scans by analysing skeletal muscle density (SMD) and the amount of intermuscular adipose tissue (IMAT). We investigated whether CT-derived low skeletal muscle quality at ICU admission is independently associated with 6-month mortality and other clinical outcomes.METHODS: This retrospective study included 491 mechanically ventilated critically ill adult patients with a CT scan of the abdomen made 1 day before to 4 days after ICU admission. Cox regression analysis was used to determine the association between SMD or IMAT and 6-month mortality, with adjustments for Acute Physiological, Age, and Chronic Health Evaluation (APACHE) II score, body mass index (BMI), and skeletal muscle area. Logistic and linear regression analyses were used for other clinical outcomes.RESULTS: Mean APACHE II score was 24 ± 8 and 6-month mortality was 35.6%. Non-survivors had a lower SMD (25.1 vs. 31.4 Hounsfield Units (HU); p < 0.001), and more IMAT (17.1 vs. 13.3 cm(2); p = 0.004). Higher SMD was associated with a lower 6-month mortality (hazard ratio (HR) per 10 HU, 0.640; 95% confidence interval (CI), 0.552-0.742; p < 0.001), and also after correction for APACHE II score, BMI, and skeletal muscle area (HR, 0.774; 95% CI, 0.643-0.931; p = 0.006). Higher IMAT was not significantly associated with higher 6-month mortality after adjustment for confounders. A 10 HU increase in SMD was associated with a 14% shorter hospital length of stay.CONCLUSIONS: Low skeletal muscle quality at ICU admission, as assessed by CT-derived skeletal muscle density, is independently associated with higher 6-month mortality in mechanically ventilated patients. Thus, muscle quality as well as muscle quantity are prognostic factors in the ICU.TRIAL REGISTRATION: Retrospectively registered (initial release on 06/23/2016) at ClinicalTrials.gov: NCT02817646 .
DOCUMENT
Rationale: Sarcopenia is a major problem and is common in community-dwelling elderly. In daily practice, there is need for low cost and easily assessable measurement tools to assess depletion of skeletal muscle (SM) mass, for example as one of the indicators of sarcopenia. Bio-electrical impedance analysis (BIA) is often used to estimate body composition, whereas ultrasound measurement is an upcoming and promising tool, as it is quick, easy to use and inexpensive in comparison with other tools that assess SM mass. Ultrasound could assess site-specific loss of SM mass and determine myoesteatosis. Therefore, in this pilot study we aimed to assess agreement between muscle thickness of rectus femoris (RF) by ultrasound and SM mass by BIA in an older population. Methods: Twenty-six older adults (mean± standard deviation (SD) age 64 ±5.0 y, 62% women) from the Hanze Health and Ageing Study were included. SM mass by BIA was estimated using the Janssen equation. Muscle thickness of RF was assessed by analyzing ultrasound images from the right leg. Two non-parametric tests were used for analysis. Correlation between ultrasound and BIA was assessed with Spearman Rho. Agreement was determined with Kendall’s coefficient of concordance (Kendall’s W). In both tests a score ≥ 0.7 was considered a strong correlation.Results: Mean (±SD) RF thickness was 18.9 (±3.8) mm. Median SM mass (Interquartile range) was 23.5 (20.8-34.7) kg. Correlation between RF thickness and SM mass was moderately positive (Spearman r=0.611; P = 0.001), whereas Kendall’s W showed a strong agreement (W= 0.835; P=0.002).Conclusion: Ultrasound measurement of RF showed an acceptable agreement with skeletal muscle mass assessed by BIA in our sample of older adults. Therefore, ultrasound could be a promising portable tool to estimate muscle size.
DOCUMENT
Immunofluorescence microscopy in this study shows that GLUT-4 protein expression is fibre-type specific within a muscle. It is postulated that both fibre-type-dependent and fibre-type-independent factors affect GLUT-4 expression.
DOCUMENT