BackgroundGait analysis has been used for decades to quantify knee function in patients with knee osteoarthritis; however, it is unknown whether and to what extent inter-laboratory differences affect the comparison of gait data between studies. Therefore, the aim of this study was to perform an inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait of patients with knee osteoarthritis.MethodsKnee biomechanics and muscle activation patterns from patients with knee osteoarthritis were analyzed, previously collected at Dalhousie University (DAL: n = 55) and Amsterdam UMC, VU medical center (VUmc: n = 39), using their in-house protocols. Additionally, one healthy male was measured at both locations. Both direct comparisons and after harmonization of components of the protocols were made. Inter-laboratory comparisons were quantified using statistical parametric mapping analysis and discrete gait parameters.ResultsThe inter-laboratory comparison showed offsets in the sagittal plane angles, moments and frontal plane angles, and phase shifts in the muscle activation patterns. Filter characteristics, initial contact identification and thigh anatomical frame definitions were harmonized between the laboratories. After this first step in protocol harmonization, the offsets in knee angles and sagittal plane moments remained, but the inter-laboratory comparison of the muscle activation patterns improved.ConclusionsInter-laboratory differences obstruct valid comparisons of gait datasets from patients with knee osteoarthritis between gait laboratories. A first step in harmonization of gait analysis protocols improved the inter-laboratory comparison. Further protocol harmonization is recommended to enable valid comparisons between labs, data-sharing and multicenter trials to investigate knee function in patients with knee osteoarthritis.
MULTIFILE
PURPOSE: To compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects.SCOPE: Nine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions.RESULTS: Perturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait.CONCLUSIONS: Healthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.
DOCUMENT
Swallowing muscle strength exercises are effective in restoring swallowing function. In order to perform the exercises with progressive load, the swallow exercise aid (SEA) was developed. Precise knowledge on which muscles are activated with swallowing exercises, especially with the SEA, is lacking. This knowledge would aid in optimizing the training program to target the relevant swallowing muscles, if necessary. Three healthy volunteers performed the three SEA exercises (chin tuck against resistance, jaw opening against resistance and effortful swallow) and three conventional exercises [conventional effortful swallow (cES), Shaker and Masako] in supine position inside an MRI scanner. Fast muscle functional MRI scans (generating quantitative T2-maps) were made immediately before and after the exercises. Median T2 values at rest and after exercise were compared to identify activated muscles. After the three SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles showed significant T2 value increase. After the Shaker, the lateral pterygoid muscles did not show such an increase, but the three other muscle groups did. The cES and Masako caused no significant increase in any of these muscle groups. During conventional (Shaker) exercises, the suprahyoid, infrahyoid, and sternocleidomastoid muscles are activated. During the SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles are activated. The findings of this explorative study further support the potential of the SEA to improve swallowing rehabilitation.
DOCUMENT
INTRODUCTION: The interpolated twitch technique is often used to assess voluntary activation (VA) of skeletal muscles. We investigated VA and the voluntary torque-superimposed torque relationship using either supramaximal nerve stimulation or better tolerated submaximal muscle stimulation, which is often used with patients. METHODS: Thirteen healthy subjects performed maximal and submaximal isometric knee extensions with superimposed maximal or submaximal doublets (100 Hz). RESULTS: Superimposed torque relative to potentiated resting doublets was smaller with maximal nerve than with submaximal muscle stimulation. Maximal VA was 87 ± 7% and 93 ± 5% for submaximal muscle and maximal nerve stimulation, respectively. The individual voluntary torque-superimposed torque relationships were more linear for submaximal muscle stimulation, possibly leading to less overestimation of VA. CONCLUSIONS: Submaximal muscle stimulation can be used to estimate VA in the knee extensors. It is less painful, and overestimation of VA may be less compared with maximal nerve stimulation.
DOCUMENT
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
Abstract—Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on interface pressure distribution in sitting individuals with SCI and study the usability of a newly developed electrode garment (ES shorts). Ten individuals with SCI participated in this study, in which two ES protocols with different duty cycles (1:1 s vs 1:4 s on-off) were applied in counterbalanced order using a custom-made garment with built-in electrodes. Outcome variables included interface pressure of the ischial tuberosities (ITs) and pressure gradient. A questionnaire was used to determine usability of the ES shorts. In both protocols, ES caused a significant decrease in average IT pressure compared with rest (no ES); on average, 35% for protocol 1:4 and 13% for protocol 1:1. The ES on-off duty cycle of protocol 1:4 showed less muscle fatigue. In general, participants scored the usability of the ES shorts as satisfactory. In this study, the application of ES resulted in a significant decrease in IT pressure. The ES on-off duty cycle of 1:4 s is recommended because of the less fatiguing effect. ES of the hamstrings and gluteal muscles might be a promising method in preventing PUs, but further study is needed.
DOCUMENT
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Knee joint instability is frequently reported by patients with knee osteoarthritis (KOA). Objective metrics to assess knee joint instability are lacking, making it difficult to target therapies aiming to improve stability. Therefore, the aim of this study was to compare responses in neuromechanics to perturbations during gait in patients with self-reported knee joint instability (KOA-I) versus patients reporting stable knees (KOA-S) and healthy control subjects.Forty patients (20 KOA-I and 20 KOA-S) and 20 healthy controls were measured during perturbed treadmill walking. Knee joint angles and muscle activation patterns were compared using statistical parametric mapping and discrete gait parameters. Furthermore, subgroups (moderate versus severe KOA) based on Kellgren and Lawrence classification were evaluated.Patients with KOA-I generally had greater knee flexion angles compared to controls during terminal stance and during swing of perturbed gait. In response to deceleration perturbations the patients with moderate KOA-I increased their knee flexion angles during terminal stance and pre-swing. Knee muscle activation patterns were overall similar between the groups. In response to sway medial perturbations the patients with severe KOA-I increased the co-contraction of the quadriceps versus hamstrings muscles during terminal stance.Patients with KOA-I respond to different gait perturbations by increasing knee flexion angles, co-contraction of muscles or both during terminal stance. These alterations in neuromechanics could assist in the assessment of knee joint instability in patients, to provide treatment options accordingly. Furthermore, longitudinal studies are needed to investigate the consequences of altered neuromechanics due to knee joint instability on the development of KOA.
DOCUMENT
Self-efficacy and outcome expectations regarding client activation determine professionals’ level of actively engaging clients during daily activities. The Client Activation Self-Efficacy and Outcome Expectation Scales for nurses and domestic support workers (DSWs) were developed to measure these concepts. This study aimed to assess their psychometric properties. Cross-sectional data from a sample of Dutch nurses (n=150) and DSWs (n=155) were analysed. Descriptive statistics were used to examine floor and ceiling effects. Construct validity was assessed by testing research-based hypotheses. Internal consistency was determined with Cronbach’s alpha. The scales for nurses showed a ceiling effect. There were no floor or ceiling effects in the scales for domestic support workers. Three out of five hypotheses could be confirmed (construct validity). For all scales, Cronbach’s alpha coefficients exceeded 0.70. In conclusion, all scales had moderate construct validity and high internal consistency. Further research is needed concerning their construct validity, testretest reliability and sensitivity to change.
DOCUMENT
Background: Skeletal muscle loss is often observed in intensive care patients. However, little is known about postoperative muscle loss, its associated risk factors, and its long-term consequences. The aim of this prospective observational study is to identify the incidence of and risk factors for surgery-related muscle loss (SRML) after major abdominal surgery, and to study the impact of SRML on fatigue and survival. Methods: Patients undergoing major abdominal cancer surgery were included in the MUSCLE POWER STUDY. Muscle thickness was measured by ultrasound in three muscles bilaterally (biceps brachii, rectus femoris, and vastus intermedius). SRML was defined as a decline of 10 per cent or more in diameter in at least one arm and leg muscle within 1 week postoperatively. Postoperative physical activity and nutritional intake were assessed using motility devices and nutritional diaries. Fatigue was measured with questionnaires and 1-year survival was assessed with Cox regression analysis. Results: A total of 173 patients (55 per cent male; mean (s.d.) age 64.3 (11.9) years) were included, 68 of whom patients (39 per cent) showed SRML. Preoperative weight loss and postoperative nutritional intake were statistically significantly associated with SRML in multivariable logistic regression analysis (P < 0.050). The combination of insufficient postoperative physical activity and nutritional intake had an odds ratio of 4.00 (95 per cent c.i. 1.03 to 15.47) of developing SRML (P = 0.045). No association with fatigue was observed. SRML was associated with decreased 1-year survival (hazard ratio 4.54, 95 per cent c.i. 1.42 to 14.58; P = 0.011). Conclusion: SRML occurred in 39 per cent of patients after major abdominal cancer surgery, and was associated with a decreased 1-year survival.
DOCUMENT