Swallowing muscle strength exercises are effective in restoring swallowing function. In order to perform the exercises with progressive load, the swallow exercise aid (SEA) was developed. Precise knowledge on which muscles are activated with swallowing exercises, especially with the SEA, is lacking. This knowledge would aid in optimizing the training program to target the relevant swallowing muscles, if necessary. Three healthy volunteers performed the three SEA exercises (chin tuck against resistance, jaw opening against resistance and effortful swallow) and three conventional exercises [conventional effortful swallow (cES), Shaker and Masako] in supine position inside an MRI scanner. Fast muscle functional MRI scans (generating quantitative T2-maps) were made immediately before and after the exercises. Median T2 values at rest and after exercise were compared to identify activated muscles. After the three SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles showed significant T2 value increase. After the Shaker, the lateral pterygoid muscles did not show such an increase, but the three other muscle groups did. The cES and Masako caused no significant increase in any of these muscle groups. During conventional (Shaker) exercises, the suprahyoid, infrahyoid, and sternocleidomastoid muscles are activated. During the SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles are activated. The findings of this explorative study further support the potential of the SEA to improve swallowing rehabilitation.
DOCUMENT
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
ObjectiveThe Plants for Joints (PFJ) intervention significantly improved pain, stiffness, and physical function, and metabolic outcomes, in people with metabolic syndrome-associated osteoarthritis (MSOA). This secondary analysis investigated its effects on body composition.MethodIn the randomized PFJ study, people with MSOA followed a 16-week intervention based on a whole-food plant-based diet, physical activity, and stress management, or usual care. For this secondary analysis, fat mass, muscle mass, and bone mineral density were measured using dual-energy X-ray absorptiometry (DEXA) for all participants. Additionally, in a subgroup (n = 32), hepatocellular lipid (HCL) content and composition of visceral adipose tissue (VAT) were measured using magnetic resonance spectroscopy (MRS). An intention-to-treat analysis with a linear-mixed model adjusted for baseline values was used to analyse between-group differences.ResultsOf 66 people randomized, 64 (97%) completed the study. The PFJ group experienced significant weight loss (−5.2 kg; 95% CI –6.9, −3.6) compared to controls, primarily from fat mass reduction (−3.9 kg; 95% CI –5.3 to −2.5). No significant differences were found in lean mass, muscle strength, or bone mineral density between groups. In the subgroup who underwent MRI scans, the PFJ group had a greater reduction in HCL (−6.5%; 95% CI –9.9, 3.0) compared to controls, with no observed differences in VAT composition.ConclusionThe PFJ multidisciplinary intervention positively impacted clinical and metabolic outcomes, and appears to significantly reduce body fat, including liver fat, while preserving muscle mass and strength.
MULTIFILE
Background To gain insight into the role of plantar intrinsic foot muscles in fall-related gait parameters in older adults, it is fundamental to assess foot muscles separately. Ultrasonography is considered a promising instrument to quantify the strength capacity of individual muscles by assessing their morphology. The main goal of this study was to investigate the intra-assessor reliability and measurement error for ultrasound measures for the morphology of selected foot muscles and the plantar fascia in older adults using a tablet-based device. The secondary aim was to compare the measurement error between older and younger adults and between two different ultrasound machines. Methods Ultrasound images of selected foot muscles and the plantar fascia were collected in younger and older adults by a single operator, intensively trained in scanning the foot muscles, on two occasions, 1–8 days apart, using a tablet-based and a mainframe system. The intra-assessor reliability and standard error of measurement for the cross-sectional area and/or thickness were assessed by analysis of variance. The error variance was statistically compared across age groups and machines. Results Eighteen physically active older adults (mean age 73.8 (SD: 4.9) years) and ten younger adults (mean age 21.9 (SD: 1.8) years) participated in the study. In older adults, the standard error of measurement ranged from 2.8 to 11.9%. The ICC ranged from 0.57 to 0.97, but was excellent in most cases. The error variance for six morphology measures was statistically smaller in younger adults, but was small in older adults as well. When different error variances were observed across machines, overall, the tablet-based device showed superior repeatability. Conclusions This intra-assessor reliability study showed that a tablet-based ultrasound machine can be reliably used to assess the morphology of selected foot muscles in older adults, with the exception of plantar fascia thickness. Although the measurement errors were sometimes smaller in younger adults, they seem adequate in older adults to detect group mean hypertrophy as a response to training. A tablet-based ultrasound device seems to be a reliable alternative to a mainframe system. This advocates its use when foot muscle morphology in older adults is of interest.
MULTIFILE
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
This case report describes the process and outcome of an intervention where illness perceptions (IPs) were targeted in order to reduce limitations in daily activities. The patient was a 45-year-old woman diagnosed with posttraumatic secondary osteoarthritis of the lateral patella-femoral cartilage of the right knee. At baseline, the patient reported maladaptive IPs on the Brief Illness Perception Questionnaire Dutch Language Version and limitations in walking stairs, cycling and walking. Fewer limitations in daily activities are hypothesized by changing maladaptive IPs into more favourable IPs. In this case report, discussing maladaptive IPs with the patient was the main intervention. A participatory decision making model was used as a design by which the maladaptive IP were discussed. Six out of eight maladaptive IPs changed favourably and there was a clinically relevant decrease in limitations of daily activities. The Global Perceived Effect was rated as much improved
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Objectives Patients who underwent corrective surgery for tetralogy of Fallot (TOF) have increased long-term risk of cardiovascular morbidity and mortality. Yet, limited information is available on how to evaluate the risk in this population. Therefore, the aim of this study was to investigate the prognostic value of aerobic exercise capacity, along with other related parameters, at medium-term follow-up in adult patients with tetralogy of Fallot. Methods and results Between 2000 and 2003, 92 adults (age 26.2 ± 7.8 years; 63 male) with corrected TOF or TOF-type morphology underwent a cardiopulmonary exercise test (CPET) until exhaustion and echocardiography. During a mean follow-up of 7.3 ± 1.2 years (range 0.9 to 9.3 years), 2 patients died and 26 patients required at least 1 cardiac-related intervention at a mean age of 28.9 ± 7.9 years. Event-free survival tended to be higher in patients with the classical type of TOF (P = 0.061). At multivariate Cox analysis, age at CPET [hazard ratio (HR): 1.13, P = 0.006], age at correction (HR: 0.82, P = 0.037), right ventricular (RV) function (HR: 4.94, P = 0.001), QRS duration (HR: 1.02, P = 0.007), percentage of predicted peak oxygen uptake (peak VO2%) (HR: 0.96, P = 0.029) and ventilatory effi ciency slope (VE/VCO2 slope) (HR: 1.13, P = 0.021) were signifi cantly related to the incidence of death/cardiac-related intervention during medium follow-up. Conclusions Early corrective surgery and a well-preserved RV are associated with a better outcome in adults with corrected TOF. Furthermore, CPET provides important prognostic information; peak VO2% and VE/VCO2 slope are independent predictors for event-free survival in patients with corrected TOF.
DOCUMENT
One major drawback of deception detection is its vulnerability to countermeasures, whereby participants wilfully modulate their physiological or neurophysiological response to critical guilt-determining stimuli. One reason for this vulnerability is that stimuli are usually presented slowly. This allows enough time to consciously apply countermeasures, once the role of stimuli is determined. However, by increasing presentation speed, stimuli can be placed on the fringe of awareness, rendering it hard to perceive those that have not been previously identified, hindering the possibility to employ countermeasures. We tested an identity deception detector by presenting first names in Rapid Serial Visual Presentation and instructing participants to lie about their own identity. We also instructed participants to apply a series of countermeasures. The method proved resilient, remaining effective at detecting deception under all countermeasures.
MULTIFILE
The objective of this thesis is to make a first step towards prevention of the progression of chronic venous disease and the development of a first venous leg ulcer in chronic venous disease patients. The aim is to identify chronic venous disease patients at risk of developing more severe clinical stages, provide insight in the lifestyle related risk factors, and provide an overview of current chronic venous disease care in the Netherlands.
DOCUMENT