In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.
DOCUMENT
Onderzoek toont aan dat explosief spiervermogen ('muscle power') de bepalende factor is voor fysiek functioneren van ouderen. Er zijn steeds meer aanwijzingen dat het specifiek trainen van power het fysiek functioneren en zelfredzaamheid van ouderen positief beïnvloedt.
Onderzoek toont aan dat explosief spiervermogen ('muscle power') de bepalende factor is voor fysiek functioneren van ouderen. Er zijn steeds meer aanwijzingen dat het specifiek trainen van power het fysiek functioneren en zelfredzaamheid van ouderen positief beïnvloedt.Doel Dit onderzoek heeft als doel om de effectiviteit van powertraining op het fysieke functioneren en de zelfredzaamheid van ouderen vast te stellen. Resultaten Dit onderzoek loopt nog. Na afloop vind je hier de resultaten. Looptijd 17 september 2017 - 01 augustus 2024 Aanpak We ontwikkelden een interventie waarin ouderen enkele weken lang specifieke spieren trainen. We volgen ouderen die de training volgen tot twee jaar om de effecten van de training te meten ten opzichte van ouderen die geen training volgden. Zie ook http://www.powerful-ageing.nl
The admission of patients to intensive care units (ICU) is sometimes planned after a large operation. However, most admissions are acute, because of life-threatening infections or trauma as a result of accidents. Their stay can last from a couple of days to a couple of weeks. ICU patients are often in pain, in fragile health condition, and connected to various devices such as a ventilator, intravenous drip, and monitoring equipment. The resulting lack of mobilization, makes patients lose 1-3% of muscle power for each day they are in the ICU. Within 2 weeks, patients can lose up to 50% of their muscle mass. Early mobilization of ICU patients reduces their time on a respirator and their hospital length of stay. Because of this, ICUs have started early mobilization physical therapy. However, there is a lack of solutions for patients that properly handle fear of movement, are sufficiently personalized to the possibilities and needs of the individual and motivate recurring use in this context. Meanwhile, various technological advances enable new solutions that might bring benefits for this specific use case. Hospitals are experimenting with screens and projections on walls and ceilings to improve their patients’ stay. Standalone virtual reality and mixed reality headsets have become affordable, available and easy to use. In this project, we want to investigate: How can XR-technologies help long-stay ICU patients with early mobilization, with specific attention to the issues of fear of movement, personalization to the individual’s possibilities, needs and compliance over multiple sessions? The research will be carried out in co-creation with the target group and will consist of a state-of-the-art literature review and an explorative study.