Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.
DOCUMENT
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
An important performance determinant in wheelchair sports is the power exchanged between the athletewheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9–1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.
DOCUMENT
Background: Skeletal muscle loss is often observed in intensive care patients. However, little is known about postoperative muscle loss, its associated risk factors, and its long-term consequences. The aim of this prospective observational study is to identify the incidence of and risk factors for surgery-related muscle loss (SRML) after major abdominal surgery, and to study the impact of SRML on fatigue and survival. Methods: Patients undergoing major abdominal cancer surgery were included in the MUSCLE POWER STUDY. Muscle thickness was measured by ultrasound in three muscles bilaterally (biceps brachii, rectus femoris, and vastus intermedius). SRML was defined as a decline of 10 per cent or more in diameter in at least one arm and leg muscle within 1 week postoperatively. Postoperative physical activity and nutritional intake were assessed using motility devices and nutritional diaries. Fatigue was measured with questionnaires and 1-year survival was assessed with Cox regression analysis. Results: A total of 173 patients (55 per cent male; mean (s.d.) age 64.3 (11.9) years) were included, 68 of whom patients (39 per cent) showed SRML. Preoperative weight loss and postoperative nutritional intake were statistically significantly associated with SRML in multivariable logistic regression analysis (P < 0.050). The combination of insufficient postoperative physical activity and nutritional intake had an odds ratio of 4.00 (95 per cent c.i. 1.03 to 15.47) of developing SRML (P = 0.045). No association with fatigue was observed. SRML was associated with decreased 1-year survival (hazard ratio 4.54, 95 per cent c.i. 1.42 to 14.58; P = 0.011). Conclusion: SRML occurred in 39 per cent of patients after major abdominal cancer surgery, and was associated with a decreased 1-year survival.
DOCUMENT
Background: Lipoedema is a chronic disorder of adipose tissue typically involving an abnormal build-up of fat cells in the legs, thighs and buttocks. Occurring almost exclusively in women, it often co-exists with obesity. Due to an absence of clear objective diagnostic criteria, lipoedema is frequently misdiagnosed as obesity, lymphoedema or a combination of both. The purpose of this observational study was to compare muscle strength and exercise capacity in patients with lipoedema and obesity, and to use the findings to help distinguish between lipoedema and obesity. Design: This cross-sectional, comparative pilot study performed in the Dutch Expertise Centre of Lymphovascular Medicine, Drachten, a secondary-care facility, included 44 women aged 18 years or older with lipoedema and obesity. Twenty-two women with lipoedema (diagnosed according the criteria of Wold et al, 1951) and 22 women with body mass index ≥30kg/m2 (obesity) were include in the study. No interventions were undertaken as part of the study. Results: Muscle strength of the quadriceps was measured with the MicroFET™, and functional exercise capacity was measured with the 6-minute walk test. The group with lipoedema had, for both legs, significantly lower muscle strength (left: 259.9 Newtons [N]; right: 269.7 N; p < 0.001) than the group with obesity. The group with lipoedema had a non-significant, but clinically relevant lower exercise-endurance capacity (494.1±116.0 metres) than the group with obesity (523.9±62.9 metres; p=0.296). Conclusions: Patients with lipoedema exhibit muscle weakness in the quadriceps. This finding provides a potential new criterion for differentiating lipoedema from obesity. We recommend adding measuring of muscle strength and physical endurance to create an extra diagnostic parameter when assessing for lipoedema.
LINK
Paralympic wheelchair athletes solely depend on the power of their upper-body for their on-court wheeled mobility as well as for performing sport-specific actions in ball sports, like a basketball shot or a tennis serve. The objective of WheelPower is to improve the power output of athletes in their sport-specific wheelchair to perform better in competition. To achieve this objective the current project systematically combines the three Dutch measurement innovations (WMPM, Esseda wheelchair ergometer, PitchPerfect system) to monitor a large population of athletes from different wheelchair sports resulting in optimal power production by wheelchair athletes during competition. The data will be directly implemented in feedback tools accessible to athletes, trainers and coaches which gives them the unique opportunity to adapt their training and wheelchair settings for optimal performance. Hence, the current consortium facilitates mass and focus by uniting scientists and all major Paralympic wheelchair sports to monitor the power output of many wheelchair athletes under field and lab conditions, which will be assisted by the best data science approach to this challenge.
DOCUMENT
The results of this study indicate that whole body metabolic and cardiovascular responses to 140 min of either steady state or variable intensity exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment
DOCUMENT
OBJECTIVE: To assess the feasibility of conducting a randomised controlled trial to determine the effectiveness of a twenty-week power-assisted exercise intervention in people with profound intellectual and multiple disabilities and to evaluate the potential beneficial effects of this intervention.DESIGN: Pilot randomised controlled trial.SETTING: A large-scale twenty-four-hour residential facility in the Netherlands.SUBJECTS: Thirty-seven persons with profound intellectual and multiple disabilities.INTERVENTION: Participants in the intervention group received a power-assisted exercise intervention three times a week for thirty minutes over a twenty-week period. Participants in the control group received care as usual.MAIN MEASURES: Trial feasibility by recruitment process and outcomes completion rates; intervention feasibility by programme compliance rates; potential outcomes by functional abilities, alertness, body composition, muscle tone, oxygen saturation, cardiovascular fitness and quality of life.RESULTS: Thirty-seven participants were recruited ( M age = 32.1, SD = 14.6) and were randomly allocated to intervention ( n = 19) and control ( n = 18) groups. Programme compliance rates ranged from 54.2% to 97.7% with a mean (SD) of 81.5% (13.4). Oxygen saturation significantly increased in the intervention group. Standardised effect sizes on the difference between groups in outcome varied between 0.02 and 0.62.CONCLUSIONS: The power-assisted exercise intervention and the trial design were feasible and acceptable to people with profound intellectual and multiple disabilities living in a residential facility. This pilot study suggests that the intervention improves oxygen saturation, but further implementation with the aim of improving other outcomes should be considered with caution.
DOCUMENT