This research contributes to understanding and shaping systems for OFMSW separation at urban Small and Medium Enterprises (SMEs, such as offices, shops and service providers). Separating SMEs’ organic fraction of municipal solid waste (OFMSW) is both an opportunity and a serious challenge for the transition towards circular cities. It is an opportunity because OFMSW represents approximately 40% of the total waste mass generated by these companies. It is challenging because post-collection separation is not feasible for OFMSW. Therefore, SMEs disposing of waste should separate their solid waste so that processing the organic fraction for reuse and recycling is practical and attainable. However, these companies do not experience direct advantages from the extra efforts in separating waste, and much of the OFMSW ends up in landfills, often resulting in unnecessary GHG emissions. Therefore, governments and waste processors are looking for ways to improve the OFMSW separation degree by urban companies disposing of waste through policies for behaviour change.There are multiple types of personnel at companies disposing of waste. These co-workers act according to their values, beliefs and norms. They adapt their behaviour continuously, influenced by the physical environment, events over time and self-evaluation of their actions. Therefore, waste separation at companies can be regarded as a Socio-Technical Complex Adaptive System (STCAS). Agent-based modelling and simulation are powerful methods to help understand STCAS. Consequently, we have created an agent-based model representing the evolution of behaviour regarding waste separation at companies in the urban environment. The model aims to show public and private stakeholders involved in solid waste collection, transport and processing to what extent behaviour change policies can shape the system towards desired waste separation degrees.We have co-created the model with participants utilising literature and empirical data from a case study on the transition of the waste collection system of a business park located at a former harbour area in Amsterdam, The Netherlands. First, a conceptual model of the system and the environment was set up through participatory workshops, surveys and interviews with stakeholders, domain experts and relevant actors. Together with our case participants, five policies that affect waste separation behaviour were included in the model. To model the behaviour of each company worker’s values, beliefs and norms during the separation and disposal of OFMSW, we have used the Value-Belief-Norm (VBN) Theory by Stern et al. (1999). We have collected data on waste collection behaviour and separation rates through interviews, workshops and a literature study to operationalise and validate the model.Simulation results show how combinations of behaviour profiles affect waste separation rates. Furthermore, findings show that single waste separation policies are often limitedly capable of changing the behaviour in the system. Rather, a combination of information and communication policies is needed to improve the separation of OFMSW, i.e., dissemination of a newsletter, providing personal feedback to the co-workers disposing of waste, and sharing information on the (improvement of) recycling rates.This study contributes to a better understanding of how policies can support co-workers’ pro-environmental behaviour for organic waste separation rates at SMEs. Thus, it shows policymakers how to stimulate the circular transition by actively engaging co-workers’ waste separation behaviour at SMEs. Future work will extend the model’s purpose by including households and policies supporting separating multiple waste types aimed at various R-strategies proposed by Potting et al. (2016).
MULTIFILE
This report was produced within the framework of the RAAK PRP project ‘Veiligheid op de werkvloer’. Personal protective equipment (PPE) is used on a daily basis by millions of people all over the EU, voluntarily or as a result of EU legislation. In this report we deal specifically with the textile/garment aspects of PPE. In this context we must consider the fact that PPE encompasses a huge area with hundreds of different applications of materials and systems tuned to specific needs;from a materials point of view it represents a complex area due to the large diversity of labour conditions. Textiles and clothing represent an area where PPE is an important area of attention. On a global scale it is an area of much research. Safety and comfort are becoming more and more important and these aspects must be in balance. Uncomfortable systems will not be used and put safe working at risk. Thus there is a continuous need for technological innovation to improve the effectiveness of PPE systems. Specialization and specific combinations aimed at use under well-defined conditions contributes to finding a good balance between comfort and safety. The design of products, taking into account the individual needs represent an area of intensive research: Safety directed ‘fashion design’.The ultimate goal is the development of proactive systems by which workers (but capital goods as well) are optimally protected. There is also a lot of attention for maintenance and cleaning since protective functions may deteriorate as a result of cleaning processes. Another important point is standardization because producers need directions for product development and supply of goods. In our overview we make a distinction between static and dynamic systems. Static systems provide passive protection, simply by being a part of an equipment that separates the worker from the danger zone. Dynamic systems are more ‘intelligent’ because these can react to stimuli and subsequently can take action. These dynamic systems use sensors, communication technology and actuators. From this research the following may be concluded: 1. Safety is obtained by choice of materials for a textile construction, including the use of coatings with special properties, application of specific additives and he use of special designed fibre shapes. 2. The architecture and ultimate construction and the combinations with other materials result in products that respond adequately. This is of great importance because of the balance comfort – safety. But a lot can be improved in this respect. 3. Insight in human behaviour, ambient intelligence and systems technology will lead to new routes for product development and a more active approach and higher levels of safety on the work floor. Consequently there is a lot of research going on that is aimed at improved materials and systems. Also due to the enormous research area of smart textiles a lot of development is aimed at the integration of new technology for application in PPE. This results in complex products that enhance both passive and active safety. Especially the commissioners, government and industry, must pay a lot of attention to specifying the required properties that a product should meet under the specific conditions. This has a cost aspect as well because production volumes are usually not that large if for small groups of products specific demands are defined. We expect that through the technology that is being developed in the scope of mass customization production technologies will be developed that allows production at acceptable cost, but still aimed at products that have specific properties for unique application areas. Purchasing is now being practiced through large procurements. We must than consider the fact that specification takes place on the basis of functionality. In that case we should move away from the current cost focus but the attention should shift towards the life cycle
MULTIFILE
An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector—most notably in the wind energy, automotive, aerospace, and marine domains. The foundation of this investigation is material characterization, which offers insights into the mechanical, chemical, and physical characteristics that determine composite performance. The papers in this collection discuss the difficulties of gaining an in-depth understanding of composites, which is necessary to maximize their overall performance and design. The collection of articles within this topic addresses the challenges of achieving a profound understanding of composites, which is essential for optimizing design and overall functionality. This includes the application of complicated material modeling together with cutting-edge simulation tools that integrate multiscale methods and multiphysics, the creation of novel characterization techniques, and the integration of nanotechnology and additive manufacturing. This topic offers a detailed overview of the current state and future directions of composite research, covering experimental studies, theoretical evaluations, and numerical simulations. This subject provides a platform for interdisciplinary cooperation and creativity in everything from the processing and testing of innovative composite structures to the inspection and repair procedures. In order to support the development of more effective, durable, and sustainable materials for the mechanical and aerospace engineering industries, we seek to promote a greater understanding of composites.