Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particu-lar, the theta-band (4-7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underly-ing retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order ("scram-bled sentence") while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8-12 Hz) band between 200-700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13-18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indi-rect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
MULTIFILE
From the article: Abstract: An overview of neural network architectures is presented. Some of these architectures have been created in recent years, whereas others originate from many decades ago. Apart from providing a practical tool for comparing deep learning models, the Neural Network Zoo also uncovers a taxonomy of network architectures, their chronology, and traces back lineages and inspirations for these neural information processing systems.
Professional and academic education increasingly use realistic, rich, safe and interactive tools such as serious gaming. In our case we have used a serious game to teach students how socio-economic and technological opportunities and challenges could shape sustainable businesses in a circular economy. In this paper, we specifically show how local symbiotic networks in a city can be created through a serious game called ReOrganise. Symbiotic networks consist of a heterogeneous set of socio-economic and technological elements. Both types of elements bring forth and undergo multiple complex and dynamic interactions. These involve social interactions among actors and physical exchanges regarding materials and energy products. Economic motivations for actors engaging in symbiosis can be selling waste as by-product or avoiding waste disposal costs. In addition, symbiotic networks often create broader environmental and social benefits, such as resource recycling, or job creation. Every specific case, however, leads to subtle differences in behaviour and outcomes. It is therefore difficult to teach students about the intricacies of network emergence in a strictly theoretical fashion. Serious gaming can be a powerful method to comprehend such intricate dynamics of forming and operating symbiotic networks. Re-Organise, a serious game that we have developed for this purpose, is based on practice-oriented action research, and developed with symbiotic network participants. By adding a case description, Re-Organise can now be used for educational purposes. Re-Organise players represent the actors in an urban agriculture area, such as farmers, restaurants, gardeners, allotment garden communities, etc. The goal of the players is to find as much local use for their waste as possible, while maximizing the fulfilment of their own needs and motivations. We have played Re-Organise multiple times in different education activities at Amsterdam University of Applied Sciences and at the Delft University of Technology. The learning goals of the game play were comprehension of specific technological solutions and boundary conditions, comprehension of different perspectives and goals of the various actors, and application of the aforementioned sociotechnical insights to develop network concepts. In order to examine whether the gameplay would indeed meet our learning goals, we have set up a pretest-posttest experiment. In the experiment, a group of students that played Re-Organise, and a control group that did not play the game, but only learned about theoretical notions of symbiosis, were exposed to questions regarding the learning goals. We found that, by playing the game, the student’s comprehension about the relevant technologies had increased. They learned hands-on about different motivations of stakeholders to engage in symbiosis. In addition, students applied technological knowledge, and behavioural and motivational aspects to co-create new local supply networks. The experience accelerated the learning process, and gave more intricate knowledge and insight into shaping and sustaining symbiotic networks. This paper provides evidence about the positive effect of interactive learning through serious gaming on learning goals in sustainable education. Re-Organise provides a safe and rich learning experience for students, and enables students, and practitioners alike, to display creativity around the shaping of circular networks.
This project aims to develop a measurement tool to assess the inclusivity of experiences for people with varying challenges and capabilities on the auditory spectrum. In doing so, we performed an in-depth exploration of scientific literature and findings from previous projects by Joint Projects. Based on this, we developed an initial conceptual model that focuses on sensory perception, emotion, cognition, and e[ort in relation to hearing and fatigue. Within, this model a visitor attraction is seen as an “experienscape” with four key elements: content, medium, context, and individual. In co-creative interviews with experts by experience with varying challenges on the auditory spectrum, they provided valuable insights that led to a significant expansion of this initial model. This was a relevant step, as in the scientific and professional literature, little is known about the leisure experiences of people with troubled hearing. For example, personal factors such as a person’s attitude toward their own hearing loss and the social dynamics within their group turned out to greatly influence the experience. The revised model was then applied in a case study at Apenheul, focusing on studying differences in experience of their gorilla presentation amongst people with varying challenges on the auditory spectrum.Societal issueThe Netherlands is one of the countries in Europe with the highest density of visitor attractions. Despite this abundance, many visitor attractions are not fully accessible to everyone, particularly to visitors with disabilities who sometimes are not eligible to ride due to safety concerns, yet when eligible generally still encounter numerous barriers. Accessibility of visitor attractions can be approached in various ways. However, because the focus often lies on operational and technical aspects (e.g., reducing stimuli at certain times of the day by turning o[ music, o[ering alternative wheelchair entrances), strategic and community-focused approaches are often overlooked. More importantly, there is also a lack of attention to the experience of visitors with disabilities. This becomes apparent from several studies from Joint Projects, where visitor attractions are being visited together with experts by experience with various disabilities. Nevertheless, experience is often being regarded as the 'core product' of the leisure sector. The right to meet, discover, develop, relax and thus enjoy this core product is hindered for many people with disabilities due to a lack of knowledge, inaccessibility (physical, digital, social, communicative as well as financial) and discrimination in society. Additionally, recreation entrepreneurs still face a significant gap in reaching the potential market of guests with disabilities and their networks. Thus, despite the numerous initiatives in the leisure sector aimed at improving accessibility on technical and operational fronts, often people with disabilities are still not being able to experience the same kind of enjoyment as those without. These observations form the pressing impetus for initiating the current research project, tapping into the numerous opportunities for learning, development and growth on making leisure offer more inclusive.Benefit to societyIn total, the current project approach comes with a number of enrichments in terms of both knowledge and methodology: a mixed-methods approach that allows for comparing data from different sources to obtain a more complete picture of the experience; a methodological co-design process that honours the 'nothing about us without us' principle; and benchmarking for a group (i.e., people with challenges on the auditory spectrum) that despite the size of its population has thus far mostly been overlooked.
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.
Cycling booms in many Dutch cities. While smart cycling innovations promise to increase cycling’s modal share in the (peri-)urban transport system even further, little is understood of their impact or cost and benefit. The “Smart Cycling Futures (SCF)” program investigates how smart cycling innovations ─ including ICT-enabled cycling innovations, infrastructures, and social innovations like new business models ─ contribute to more resilient and liveable Dutch urban regions. Cycling innovations benefit urban regions in terms of accessibility, equality, health, liveability, and decreasing CO2-emissions when socially well embedded. To facilitate a transition to a sustainable future that respond to pressing issues, the SCF research project runs urban living labs in close collaboration with key stakeholders to develop transdisciplinary insights in the conditions needed for upscaling smart-cycling initiatives. Each living lab involving real-world experiments responds to the urgent challenges that urban regions and their stakeholders face today. The proposed research sub-programs focus on institutional dynamics, entrepreneurial strategies, governance and the socio-spatial conditions for smart cycling. Going beyond analysis, we also assess the economic, social, and spatial impacts of cycling on urban regions. The research program brings together four Dutch regions through academic institutions (three general and one applied-science universities); governmental authorities (urban and regional); and market players (innovative entrepreneurs). Together, they answer practice-based questions in a transdisciplinary and problem-oriented fashion. Research in the four regions generates both region-specific and universally applicable findings. Finally, SCF uses its strong research-practice network around cycling to co-create the research and run an outreach program.