© 2025 SURF
De integratie van ontwerp en uitvoering schiet al jaren tekort. De (vaak terechte) karikaturen zijn dat architecten blijven steken in vormgeving en dat bouwers teveel techneut zijn om te kunnen ontwerpen. Opdrachtgevers eisen innovatie van ons bouwproces. Nieuwe contractvormen dwingen bouwers en adviseurs om beter samen te werken. Of is dat een bij voorbaat verloren zaak en kunnen we beter een nieuwe specialist tot leven wekken?
Digitale architectuur wordt beoefend door digitale architecten. Deze digitale architecten spelen een cruciale rol in het tijdig en betrouwbaar realiseren van IT-oplossingen. De Nederlandse godfather van IT Edsger Dijkstra zei in 1962 bij zijn inaugurele rede (Dijkstra, 1962): “Wij hebben geen betere machines omdat wij geen betere machines verdienen.” De achterliggende oorzaak, betoogde hij, was dat fabrikanten precies bouwden wat de kopers vroegen zonder dat de kopers in enige mate geremd werden door de beperkingen van de technologie. Dit gebeurde onder het motto “In order to live we must sell. And we must sell to perfect idiots". Het onderliggende probleem is dat de vertaling van de wensen van de klant in een werkend compromis niet is geslaagd. Dit is exact het pijnpunt, waar de digitale architect een cruciale rol. speelt. Een kundig architect is in staat met zijn omgeving tot een compromis te komen dat voor alle belanghebbenden acceptabel is. Alternatief is dat niet tot bouw besloten wordt. De vastlegging van het ontwerp van dat compromis gebeurt in de digitale architectuur en ontwerpdocumentatie van de oplossing.
Over de toekomst van de architect, als speler in de complexe Europese bouwwereld van vandaag.
Western cities are rapidly densifying, and new building typologies are beinginvented to mitigate high-rise and balance residential, commercial andrecreational functions. This vertical urbanization requires rethinking thetraditional design of public space to promote citizens’ well-being. While the scarce studies on high-rise environments indicate several risks, including social fragmentation and privatization of public functions (Henderson-Wilson 2008; Love et al., 2014), mental stress and undermining attention restoration (Mazumder et al., 2020; Lindal & Hartig 2013), evidence on the potential salutary and mitigating effects of architectural design qualities is limited (Suurenbroek & Spanjar 2023).The Building for Well-being research project combines biometric and socialdata-collection techniques to address this gap. It builds on studies investigatinghow built environments allow user engagement (Mallgrave 2013; Simpson2018) and afford important activities (Gibson 1966). This case study focuseson the experiences of predominant users of the NDSM Wharf in Amsterdamas it is transformed from a post-industrial site into a high-density, mixeduseneighborhood. Using eye-tracking, field and laboratory-based surveys, itexplores how residents, passers-by and visitors visually experience, appreciateand perceive the restorative value of the wharf’s recently developed urbanspaces.Thirty-six university students were randomly recruited as test subjects for thelaboratory test and assigned to one of the three user groups. The residentand passer-by groups were primed for familiarity. Each group was assigneda distinct walking mode and participants were told to imagine they werestrolling (residents), rushing (passers-by) or exploring (visitors). The exposuretime to visual stimuli of participants was five seconds per image. Afterwards,they reported on the perceived restorative quality of ten urban spaces,focusing on: (1) sense of being away, (2) level of complexity-compatibilityand (3) fascination, based on an adapted Restorative Components Scale (RCS,Yin et al. 2022; Laumann et al. 2001). Self-reported appreciation per scenewas measured on a 10-point Likert scale and subjects indicated elements inthe ten urban spaces they liked or disliked (see Figure 1). A semi-structuredon-site survey was also carried out to investigate user experiences furtherand for triangulation. Thirty-one users, consisting of residents, passers-byand visitors to the NDSM Wharf, rated their appreciation of the site and itsperceived restorative and design qualities (following Ewing & Clemente, 2013)on a 10-point Likert scale.The meta-data analysis of RCS statistics, appreciation values, eye-trackingmetrics and heatmaps reveals distinct visual patterns among user groups. Thispoints to the influence of environmental tasks and roles (see Figure 2). Strollingand exploring resulted in a comprehensive visual exploration of scenes with ahigher mean total fixation count and shorter mean total fixation duration thangoal-oriented walking. It suggests that walking mode determines the level ofopenness to the environment and that architectural attributes can also steervisual exploration. Scenes with the highest appreciation scores correlatedwith the RCS outcomes. They displayed coherence and opportunities forsocial engagement, contrasting with scenes with inconsistent industrial andcontemporary features. These findings provide spatial designers with insightsinto the subliminal experiences of predominant user groups to promote wellbeing in urban transformation.
Urban densification continues unabated, even as the possible consequences for users’ eye-level experiences remain unknown. This study addresses these consequences. In a laboratory setting, images of the NDSM wharf were shown to university students primed for one of three user groups: residents, visitors and passers-by. Their visual experiences were recorded using eye-tracking and analyzed in combination with surveys on self-reported appreciation and restorativeness. On-site surveys were also administered among real users. The results reveal distinct eye-movement patterns that point to the influence of environmental roles and tasks and how architectural qualities steer people’s visual experience, valence and restoration.
The coronavirus pandemic highlighted the vital role urban areas play in supporting citizens’ health and well-being (Ribeiro et al., 2021). In times of (personal) vulnerability, citizens depend on their neighbourhood for performing daily physical activities to restore their mental state, but public spaces currently fall short in fulfilling the appropriate requirements to achieve this. The situation is exacerbated by Western ambitions to densify through high-rise developments to meet the housing demand. In this process of urban densification, public spaces are the carriers where global trends, local ambitions and the conditions for the social fabric materialise (Battisto & Wilhelm, 2020). High-rise developments in particular will determine users’ experiences at street-level. Consequently, they have an enduring influence on the liveability of neighbourhoods for the coming decades but, regarding the application of urban design principles, their impact is hard to dissect (Gifford, 2007).Promising emerging technologies and methods from the new transdisciplinary field of neuroarchitecture may help identify and monitor the impact of certain physical characteristics on human well-being in an evidence-based way. In the two-year Sensing Streetscapes research study, biometric tools were tested in triangulation with traditional methods of surveys and expert panels. The study unearthed situational evidence of the relationship between designed and perceived spaces by investigating the visual properties and experience of high-density environments in six major Western cities. Biometric technologies—Eye-Tracking, Galvanic Skin Response, mouse movement software and sound recording—were applied in a series of four laboratory tests (see Spanjar & Suurenbroek, 2020) and one outdoor test (see Hollander et al., 2021). The main aim was to measure the effects of applied design principles on users’ experiences, arousal levels and appreciation.Unintentionally, the research study implied the creation of a 360° built-environment assessment tool. The assessment tool enables researchers and planners to analyse (high-density) urban developments and, in particular, the architectural attributes that (subliminally) affect users’ experience, influencing their behaviour and perception of place. The tool opens new opportunities for research and planning practice to deconstruct the successes of existing high-density developments and apply the lessons learned for a more advanced, evidence-based promotion of human health and well-being.ReferencesBattisto, D., & Wilhelm, J. J. (Eds.). (2020). Architecture and Health Guiding Principles for Practice. Routledge, Taylor & Francis Group. Gifford, R. (2007). The Consequences of Living in High-Rise Buildings. Architectural Science Review, 50(1), 2–17. https://doi.org/https://doi.org/10.3763/asre.2007.5002 Hollander, J. B., Spanjar, G., Sussman, A., Suurenbroek, F., & Wang, M. (2021). Programming for the subliminal brain: biometric tools reveal architecture’s biological impact. In K. Menezes, P. de Oliveira-Smith, & A. V. Woodworth (Eds.), Programming for Health and Wellbeing in Architecture (pp. 136–149). Routledge, Taylor & Francis Group. https://doi.org/https://doi.org/10.4324/9781003164418 Ribeiro, A. I., Triguero-Mas, M., Jardim Santos, C., Gómez-Nieto, A., Cole, H., Anguelovski, I., Silva, F. M., & Baró, F. (2021). Exposure to nature and mental health outcomes during COVID-19 lockdown. A comparison between Portugal and Spain. Environment International, 154, 106664. https://doi.org/https://doi.org/10.1016/j.envint.2021.106664 Spanjar, G., & Suurenbroek, F. (2020). Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users’ Visual Experiences. Journal of Digital Landscape Architecture (JoDLA), 5(2020), 374–385. https://gispoint.de/gisopen-paper/6344-eye-tracking-the-city-matching-the-design-of-streetscapes-in-high-rise-environments-with-users-visual-experiences.html?IDjournalTitle=6
MULTIFILE
Onderzoekers Frank Suurenbroek en Gideon Spanjar organiseerden een online boeksymposium met toonaangevende internationale onderzoekers, naar aanleiding van de Engelse uitgave van hun boek ‘Neuroarchitecture: Designing High-rise Cities at Eye level'. Rode draad: welke ontwerpprincipes kunnen bijdragen aan een gezonde stad en wat kan neuroarchitectuur hierin betekenen? Tijdens het online seminar, waaraan maar liefst 150 geïnteresseerden deelnamen, bespraken onderzoekers vanuit diverse disciplines zoals architectuur, landschapsarchitectuur, planologie en stedenbouw de laatste ontwikkelingen uit het hybride werkveld van neuroarchitectuur. Suurenbroek en Spanjar van de Hogeschool van Amsterdam demonstreren met 'Neuroarchitecture' hoe het gebruik van eyetracking-technologie ingezet kan worden om de ervaring van stedelijke ontwerpen op ooghoogte vast te leggen. Door het koppelen van interviews met de analyse van oogbewegingen wordt achterhaald in welke mate gebruikers de beschikbare visuele informatie uit de omgeving in zich opnemen, grotendeels onbewust.
LINK
Urban renewal and urban area development projects are by nature highly complex processes involving a multiplicity of professionals, stakeholders, and conflicting interests. Adding to this complexity are the formulated ambitions and societal challenges projects have to answer to. One of these ambitions emphasizes a more inclusive planning process, involving the inhabitants in all stages of the planning process. In terms of design, another challenge is to create environments on a human scale while building in high density such as with tall residential buildings. The metropolitan area of Amsterdam intends to have 100,000 new dwellings by 2025. Most of these dwellings have to be added within the existing urban fabric, planned on obsolete inner-city brownfield locations, at the waterfront, nearby highways whereas others are going to be built in deprived neighborhoods. The deprived neighborhoods are mainly located in the postwar areas of Amsterdam, on its northern, western, and south-eastern sides. The deprived neighborhood called the Bijlmermeer located on the south-eastern side of the city, for instance was the first high-rise development project in the Netherlands. It was designed as a single project with identical high-rise buildings in a hexagonal grid surrounded with large green spaces.These deprived, modernistic neighborhoods lack the classic housing block structures with a clear articulation of buildings and street spaces. They appear to be responsible for an ‘inhuman’ scale and demonstrate the lasting impact critical design flaws can have on the daily lives of inhabitants. Hence, the question is how to develop liveable environments where people feel fully supported by building architecture and streetscape configuration. To prevent new urban area developments that will again fail to incorporate human scale, scientific methods and user input are needed to inform the practice of planning and design, and their applied design solutions. Building on two research projects (one on participatory planning and the other on neuroarchitecture research), we explore how the newly emerging field of neuroarchitecture - and the eye-tracker in particular, might enhance urban area developments on a human scale.
Large cities in the West respond to an ever-increasing shortage of affordable housing by accelerating the process of urban densification. Amsterdam, for instance, aims to increase its housing stock by 10 percent in the next 15 years as its population is expected to grow by 20 percent. As in other cities, it seems inevitable that high-rise buildings with higher skyscrapers than in the past will be built within the existing urban fabric. Such large-scale (re)development projects shape the conditions for inhabitants’ eye-level experiences, perception of place and overall well-being. The new hybrid field of neuroarchitecture offers promising eye-tracking technology and theories for measuring inhabitants’ visual experiences of the city and rethinking the effectiveness of applied design principles across the globe. In this paper, the ‘classic’ design solutions for creating streetscapes on a human scale in densified areas have been assessed by eye-tracking 31 participants in a laboratory setting, all of whom viewed photographs of 15 existing streetscapes in high-rise environments. The study drew on theories from the field of neuroarchitecture and used input from a panel of (landscape) architects and urban designers to design the research and analyze the eye-tracked patterns. The results indicate that the classic design principles (horizontal–vertical rhythms and variety; active ground floor; tactile materials) play a significant role in people’s appreciation of the streetscape and that their attention is unconsciously captured by the presence of these principles. The absence of the design principles seems to result in a scattered ‘searching’ eye movement pattern. This also suggests that a coherent design of streetscapes in high-rise environments may contribute to a human scale at eye-level.
MULTIFILE