The present study investigated whether text structure inference skill (i.e., the ability to infer overall text structure) has unique predictive value for expository text comprehension on top of the variance accounted for by sentence reading fluency, linguistic knowledge and metacognitive knowledge. Furthermore, it was examined whether the unique predictive value of text structure inference skill differs between monolingual and bilingual Dutch students or students who vary in reading proficiency, reading fluency or linguistic knowledge levels. One hundred fifty-one eighth graders took tests that tapped into their expository text comprehension, sentence reading fluency, linguistic knowledge, metacognitive knowledge, and text structure inference skill. Multilevel regression analyses revealed that text structure inference skill has no unique predictive value for eighth graders’ expository text comprehension controlling for reading fluency, linguistic knowledge and metacognitive knowledge. However, text structure inference skill has unique predictive value for expository text comprehension in models that do not include both knowledge of connectives and metacognitive knowledge as control variables, stressing the importance of these two cognitions for text structure inference skill. Moreover, the predictive value of text structure inference skill does not depend on readers’ language backgrounds or on their reading proficiency, reading fluency or vocabulary knowledge levels. We conclude our paper with the limitations of our study as well as the research and practical implications.
BackgroundPhysical exercise in cancer patients is a promising intervention to improve cognition and increase brain volume, including hippocampal volume. We investigated whether a 6-month exercise intervention primarily impacts total hippocampal volume and additionally hippocampal subfield volumes, cortical thickness and grey matter volume in previously physically inactive breast cancer patients. Furthermore, we evaluated associations with verbal memory.MethodsChemotherapy-exposed breast cancer patients (stage I-III, 2–4 years post diagnosis) with cognitive problems were included and randomized in an exercise intervention (n = 70, age = 52.5 ± 9.0 years) or control group (n = 72, age = 53.2 ± 8.6 years). The intervention consisted of 2x1 hours/week of supervised aerobic and strength training and 2x1 hours/week Nordic or power walking. At baseline and at 6-month follow-up, volumetric brain measures were derived from 3D T1-weighted 3T magnetic resonance imaging scans, including hippocampal (subfield) volume (FreeSurfer), cortical thickness (CAT12), and grey matter volume (voxel-based morphometry CAT12). Physical fitness was measured with a cardiopulmonary exercise test. Memory functioning was measured with the Hopkins Verbal Learning Test-Revised (HVLT-R total recall) and Wordlist Learning of an online cognitive test battery, the Amsterdam Cognition Scan (ACS Wordlist Learning). An explorative analysis was conducted in highly fatigued patients (score of ≥ 39 on the symptom scale ‘fatigue’ of the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire), as previous research in this dataset has shown that the intervention improved cognition only in these patients.ResultsMultiple regression analyses and voxel-based morphometry revealed no significant intervention effects on brain volume, although at baseline increased physical fitness was significantly related to larger brain volume (e.g., total hippocampal volume: R = 0.32, B = 21.7 mm3, 95 % CI = 3.0 – 40.4). Subgroup analyses showed an intervention effect in highly fatigued patients. Unexpectedly, these patients had significant reductions in hippocampal volume, compared to the control group (e.g., total hippocampal volume: B = −52.3 mm3, 95 % CI = −100.3 – −4.4)), which was related to improved memory functioning (HVLT-R total recall: B = −0.022, 95 % CI = −0.039 – −0.005; ACS Wordlist Learning: B = −0.039, 95 % CI = −0.062 – −0.015).ConclusionsNo exercise intervention effects were found on hippocampal volume, hippocampal subfield volumes, cortical thickness or grey matter volume for the entire intervention group. Contrary to what we expected, in highly fatigued patients a reduction in hippocampal volume was found after the intervention, which was related to improved memory functioning. These results suggest that physical fitness may benefit cognition in specific groups and stress the importance of further research into the biological basis of this finding.
MULTIFILE