Movie: Results of the project Improving Transport and Accessibility through new Communication Technologies. This project is funded by the European Regional Development Fund within the Interreg IVB North Sea Region Programme.
YOUTUBE
The diversity and intensity of human activities in the North Sea region (NSR) and other maritime regions are increasing. This necessitates transboundary coordination at the sea basin level, which is required but yet insufficiently established. Through European co-funded projects, national policymakers, stakeholders, and scientists in MSP are enabled to develop transboundary coordination (TBC) mechanisms. TBC requires, alongside other factors, a form of social and policy learning between these actors in different countries. The NorthSEE project (2016–2022) was an example of such an EU-co-funded project and was aimed at enhancing coherence in MSP processes and plans across the NSR. This article examines the project's key learning outcomes, the role of the MSP Challenge Simulation Platform in supporting these outcomes, and factors that enabled or constrained learning within the project. Data was collected during the project via document analysis, questionnaires from participatory stakeholder workshops, interviews with sixteen project participants and ten workshop participants, and observations. The study highlights that project participants have gained more insight into each other's planning systems, are able to contact each other more easily, and have initiated several follow-up initiatives. Furthermore, it shows that interactive and participatory tools, such as the MSP Challenge Simulation Platform, can contribute to individual and social learning by providing participants with instant feedback on their decisions. These learning outcomes have been influenced by various enabling and constraining conditions, including time, resources, and the differing levels of expertise and knowledge among project partners and participants. Assessing the broader societal impact remains a challenge and warrants further attention.
MULTIFILE
Brief demonstration of how the Ecopath-with-Ecosim ecosystem models for the North Sea and Baltic Sea regions function within the MSP Challenge simulation platform
DOCUMENT
This document focuses on the Bottom-up Business Opportunity (BUBO) method developed by the Knowledge Center Biobased Economy (KCBBE) of the Hanze University of Applied Sciences Groningen as part of the Interreg North Sea PERISCOPE program1. In short, the PERISCOPE program includes the start of a permanent transnational intersectoral innovation platform for sustainable development within the North Sea regions. The program will answer the question what opportunities for new business in the North Sea region can be developed and deployed. The final result is a platform that provides innovations and instruments in the areas of finance, policy and Living Labs.
DOCUMENT
The international Wadden Sea is an estuarine tidal area along the North Sea coasts of The Netherlands, Germany and Denmark. It is characteristic for regions with sandy coasts and a medium tidal range. Fifty barrier islands separate the Wadden Sea from the North Sea, and an offshore transition zone to the North Sea. The tidal flats of the Wadden Sea form the largest unbroken stretchof mudflats worldwide. The present form of the Wadden Sea is still mainly the result of natural forces, although since the Middle Ages man has changed the Wadden Sea landscape by building dykes and reclaiming land. The Wadden Sea is an important nursery area for fish, a foraging and resting habitat for seals, and a foraging habitat for migrating waders. The Wadden Sea, including large parts of the islands, is a fully nature protected area and designated as a natural World Heritage site in 2009 (Wolff, 2013). The research group Marine Wetlands Studies at Stenden University is focusing on the sustainable development of tourism in the area. Current research has the purpose to get insight in to the effects of the World Heritage Status, in particular the natural values of the area, on future tourism development.
DOCUMENT
To experience and appreciate the challenges involved in marine spatial planning (MSP), students enrolled in two MSP courses play stakeholder roles in a realistic serious game. The serious game is played with the participatory online MSP tool SeaSketch, and tackles the contemporary Dutch marine renewable energy challenge.
DOCUMENT
Effects of climate change in cities are evident and are expected to increase in the future, demanding adaptation. In order to share knowledge, raise awareness and build capacity on climate adaptation, “ClimateCafés” have been utilized since 2012 in over 50 global events. ClimateCafé is a field education concept involving different fields of science for capacity building in climate adaptation depending on the specific needs of stakeholders. This chapter describes the need, method and results of two ClimateCafés performed in North America in 2022. In North America, there was a clear demand for proof of the long-term efficiency of small-scale urban nature-based solutions (NbS), since the hydraulic capacity of rain gardens and swales is often questioned in low permeable soils and high groundwater tables. The main research question in the ClimateCafés is: Which variation of the (un)saturated infiltration capacity can be expected under conditions with low permeable soil and high groundwater tables (under sea level)? To answer this research question, participative monitoring of NbS has taken place on swales and rain gardens implemented in New Orleans (under sea level) and Vancouver (bed rock). The ClimateCafés aimed at generating context-specific data on nature-based solutions by using open-source tools and cost-effective data collection techniques. The results of the workshops show that relevant, multidisciplinary data can be gathered in a short period of time with limited resources. As example, over 500 individual NbS projects are mapped in both cities from which a selection is made for field research with several stakeholders. The method of the conducted research consisted of a full-scale testing method, measuring the long-term infiltration capacity of rain gardens and swales installed in the last two decades. The results show a high variation of empty times for rain gardens and swales (26–300 mm/h) with fast decreasing infiltration capacity after saturation of the soil (second test showed a decrease in the order of 35%). The ClimateCafés stimulated accelerated climate action and support for national and international knowledge exchange in adaptation solutions for a climate resilient future. Besides raising awareness and capacity building, the evaluation of the outcomes of the ClimateCafés Vancouver and New Orleans lead to practical guidelines and cost-effective interventions to optimize the performance of existing NbS and a strategy for implementing optimized NbS in the near future.
LINK
This quick guide is written to inspire designers, policy makers, company owners, employees, educators and students to change the linear economy into a circular economy by collaborating in local value chains. This guide explains the basics of circular economy, value chains and it gives practical tips for you to work with and practical examples to learn from. It is developed within the context of the Biocup project, part of the BIOCAS Interreg project supported by the North Sea Programme of the European Regional Development Fund of the European Union.
DOCUMENT
In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are considered in a variety of 10x10 layout configurations. The Annual Energy Production (AEP) and cost of electrical infrastructure were determined using two in-house ECN software tools, namely FarmFlow and EEFarm II. Combining this information with a generalised cost model, the LCoE from these layouts were determined. The optimum LCoE for the AVATAR wind farm was determined to be 92.15 e/MWh while for the INNWIND.EU wind farm it was 93.85 e/MWh. Although the low induction wind farm oered a marginally lower LCoE, it should not be considered as definitive due to simple nature of the cost model used. The results do indicate that the AVATAR wind farms require less space to achieve this similar cost performace, with a higher optimal wind farm power density (WFPD) of 3.7 MW/km2 compared to 3 MW/km2 for the INNWIND.EU based wind farm.
DOCUMENT