Efficiency of city logistics activities suffers due to conflicting personal preferences and distributed decision making by multiple city logistics stakeholders. This is exacerbated by interdependency of city logistics activities, decision making with limited information and stakeholders’ preference for personal objectives over system efficiency. Accordingly, the key to understanding the causes of inefficiency in the city logistics domain is understanding the interaction between heterogeneous stakeholders of the system. With the capabilities of representing a system in a natural and flexible way, agent based modelling (ABM) is a promising alternative for the city logistics domain. This research focuses on developing a framework for the successful implementation of the ABM approach for the city logistics domain. The framework includes various elements – a multi-perspective semantic data model (i.e. ontology) and its validation, the development of an agent base model using this ontology, and a validation approach for the agent-based model. Conclusively, the framework shows that a rigorous course can be taken to successfully implement agent based modelling approach for the city logistics domain.
In this paper, we focus on how the qualitative vocabulary of Dynalearn, which is used for describing dynamic systems, corresponds to the mathematical equations used in quantitative modeling. Then, we demonstrate the translation of a qualitative model into a quantitative model, using the example of an object falling with air resistance.
CC-BYNatural ventilation has been used widely in buildings to deliver a healthy and comfortable indoor environment for occupants. It also reduces the consumption of energy in the built environment and dilutes the concentration of carbon dioxide. Various methods and techniques have been used to evaluate and predict indoor airspeed and patterns in buildings. However, few studies have been implemented to investigate the relevant methods and tools for the evaluation of ventilation performance in indoor and outdoor spaces. The current study aims to review available methods, identifying reliable ones to apply in future research. This study investigates scientific databases and compares the advantages and drawbacks of methods including analytical models, empirical models, zonal models, and CFD models. wind-driven ventilation; analytical models; experimental models; zonal models; computational fluid dynamics (CFD) models; numerical discretization methods https://www.mdpi.com/2071-1050/13/22/12721Sustainability 2021, 13(22), 12721
MULTIFILE
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
The Ph.D. candidate will investigate the seismic response of connection details frequently used in traditional Dutch construction practice, specifically in the Groningen area. The research will focus on the experimental and numerical definition of the complete load-deflection behaviour of each considered connection; specifically, the tests will aim at identifying stiffness, strength, ductility, and dissipative behaviour of the connections. The experiments will be conducted on scaled or full-scale components that properly resemble the as-built and retrofitted as well connection details. The tests will involve monotonic and cyclic loading protocols to be able to define the load and displacement response of the connection to reversal loads, such as earthquakes, as well as the development of failure mechanisms under such loading cases. Possibly, also dynamic tests will be performed. Numerical models will be created and calibrated versus the experimental findings. Characteristic hysteretic behaviours of the examined connection types will be provided for the use of engineers and researchers.