Due to a growing challenge to feed the world’s population and an increased awareness to minimize the impact of our food choices on climate change, a more plant-based diet has gained popularity with a growing number of plant-based products on the market. To stimulate a plant-based diet that also improves long-term health, data are needed to monitor whether these products are healthy alternatives to animal-based foods. Therefore, this study inventoried 916 plant-based meat, fish, and dairy alternatives from eight Dutch supermarkets. The nutritional quality of each product was assessed by (1) the Dutch food-based dietary guidelines and (2) the Nutri-Score. The results show that over 70% of meat, fish, and dairy alternatives have an A/B Nutri-Score (indicating high nutritional quality), but do not comply with the Dutch dietary guidelines. This is mainly due to high salt and low vitamin B12 and iron content (meat and fish alternatives) or low protein and calcium levels (dairy alternatives). In conclusion, the majority of plant-based products are nutritionally not full alternatives of the animal-based equivalents; however, there are still opportunities for reformulation. To aid the consumer in making healthy plant-based food choices, a better alignment between the Nutri-Score and the recommended dietary guidelines is needed.
MULTIFILE
Background: A chronic low-grade infammatory profle (CLIP) is associated with sarcopenia in older adults. Protein and Vitamin (Vit)D have immune-modulatory potential, but evidence for efects of nutritional supplementation on CLIP is limited. Aim To investigate whether 13 weeks of nutritional supplementation of VitD and leucine-enriched whey protein afected CLIP in subjects enrolled in the PROVIDE-study, as a secondary analysis. Methods: Sarcopenic adults (low skeletal muscle mass) aged ≥ 65 years with mobility limitations (Short Physical Performance Battery 4–9) and a body mass index of 20–30 kg/m2 were randomly allocated to two daily servings of active (n=137, including 20 g of whey protein, 3 g of leucine and 800 IU VitD) or isocaloric control product (n=151) for a double-blind period of 13 weeks. At baseline and after 13 weeks, circulating interleukin (IL)-8, IL-1 receptor antagonist (RA), soluble tumor-necrosis-factor receptor (sTNFR)1, IL-6, high-sensitivity C-reactive protein, pre-albumin and 25-hydroxyvitamin(OH) D were measured. Data-analysis included repeated measures analysis of covariance (corrected for dietary VitD intake) and linear regression. Results: IL-6 and IL-1Ra serum levels showed overall increases after 13 weeks (p=0.006 and p<0.001, respectively). For IL-6 a signifcant time × treatment interaction (p=0.046) was observed, with no signifcant change over time in the active group (p=0.155) compared to control (signifcant increase p=0.012). IL-8 showed an overall signifcant decrease (p=0.03). The change in pre-albumin was a signifcant predictor for changes in IL-6 after 13 weeks. Conclusions: We conclude that 13 weeks of nutritional supplementation with VitD and leucine-enriched whey protein may attenuate the progression of CLIP in older sarcopenic persons with mobility limitations
Multimodal prehabilitation programs to improve physical fitness before surgery often include nutritional interventions. This study evaluates the efficacy of and adherence to a nutritional intervention among colorectal and esophageal cancer patients undergoing the multimodal Fit4Surgery prehabilitation program. The intervention aims to achieve an intake of ≥1.5 g of protein/kg body weight (BW) per day through dietary advice and daily nutritional supplementation (30 g whey protein). This study shows 56.3% of patients met this goal after prehabilitation. Mean daily protein intake significantly increased from 1.20 ± 0.39 g/kg BW at baseline to 1.61 ± 0.41 g/kg BW after prehabilitation (p < 0.001), with the main increase during the evening snack. BW, BMI, 5-CST, and protein intake at baseline were associated with adherence to the nutritional intervention. These outcomes suggest that dietary counseling and protein supplementation can significantly improve protein intake in different patient groups undergoing a multimodal prehabilitation program.
The composition of diets and supplements given to bovine cattle are constantly evolving. These changes are driven by the social call for a more sustainable beef and dairy production, interests to influence the nutritional value of bovine products for human consumption, and to increase animal health. These adaptations can introduce (new) compounds in the beef and milk supply chain. Currently, the golden standard to study transfer of compounds from feed or veterinary medicine to cows and consequences for human health is performing animal studies, which are time consuming, costly and thus limited. Although animal studies are increasingly debated for ethical reasons, cows are still in the top 10 list of most used animals for animal experiments in Europe. There is, however, no widely applicable alternative modelling tool available to rapidly predict transfer of compounds, apart from individual components like cattle kinetic models and simple in vitro kinetic assays. Therefore, this project aims to develop a first-of-a-kind generic bovine kinetic modelling platform that predicts the transfer of compounds from medicine/supplements and feed to bovine tissues. This will provide new tools for the efficacy and safety evaluation of veterinary medicine and feed and facilitates a rapid evaluation of human health effects of bovine origin food products, thereby contributing to an increased safety in the cattle production chain and supporting product innovations, all without animal testing. This will be accomplished by integrating existing in silico and in vitro techniques into a generic bovine modelling platform and further developing state-of-the-art in vitro bovine organoid cell culturing systems. The platform can be used world-wide by stakeholders involved in the cattle industry (feed-/veterinary medicine industry, regulators, risk assessors). The project partners involve a strong combination of academia, knowledge institutes, small and medium enterprises, industry, branche-organisations and Proefdiervrij, all driven by their pursuit for animal free innovations.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.