BACKGROUND: Increasing evidence indicates the potential benefits of restricted fluid management in critically ill patients. Evidence lacks on the optimal fluid management strategy for invasively ventilated COVID-19 patients. We hypothesized that the cumulative fluid balance would affect the successful liberation of invasive ventilation in COVID-19 patients with acute respiratory distress syndrome (ARDS).METHODS: We analyzed data from the multicenter observational 'PRactice of VENTilation in COVID-19 patients' study. Patients with confirmed COVID-19 and ARDS who required invasive ventilation during the first 3 months of the international outbreak (March 1, 2020, to June 2020) across 22 hospitals in the Netherlands were included. The primary outcome was successful liberation of invasive ventilation, modeled as a function of day 3 cumulative fluid balance using Cox proportional hazards models, using the crude and the adjusted association. Sensitivity analyses without missing data and modeling ARDS severity were performed.RESULTS: Among 650 patients, three groups were identified. Patients in the higher, intermediate, and lower groups had a median cumulative fluid balance of 1.98 L (1.27-7.72 L), 0.78 L (0.26-1.27 L), and - 0.35 L (- 6.52-0.26 L), respectively. Higher day 3 cumulative fluid balance was significantly associated with a lower probability of successful ventilation liberation (adjusted hazard ratio 0.86, 95% CI 0.77-0.95, P = 0.0047). Sensitivity analyses showed similar results.CONCLUSIONS: In a cohort of invasively ventilated patients with COVID-19 and ARDS, a higher cumulative fluid balance was associated with a longer ventilation duration, indicating that restricted fluid management in these patients may be beneficial. Trial registration Clinicaltrials.gov ( NCT04346342 ); Date of registration: April 15, 2020.
This study offers an overview of the natural development of the use of an activity tracker, as well as the relative importance of a range of determinants from literature. Decay is exponential but slower than may be expected from existing literature. Many factors have a small contribution to sustained use. The most important determinants are technical condition, age, user experience, and goal-related factors. This finding suggests that activity tracking is potentially beneficial for a broad range of target groups, but more attention should be paid to technical and user experience–related aspects of activity trackers.
MULTIFILE
BACKGROUND: Prognostic assessments of the mortality of critically ill patients are frequently performed in daily clinical practice and provide prognostic guidance in treatment decisions. In contrast to several sophisticated tools, prognostic estimations made by healthcare providers are always available and accessible, are performed daily, and might have an additive value to guide clinical decision-making. The aim of this study was to evaluate the accuracy of students', nurses', and physicians' estimations and the association of their combined estimations with in-hospital mortality and 6-month follow-up.METHODS: The Simple Observational Critical Care Studies is a prospective observational single-center study in a tertiary teaching hospital in the Netherlands. All patients acutely admitted to the intensive care unit were included. Within 3 h of admission to the intensive care unit, a medical or nursing student, a nurse, and a physician independently predicted in-hospital and 6-month mortality. Logistic regression was used to assess the associations between predictions and the actual outcome; the area under the receiver operating characteristics (AUROC) was calculated to estimate the discriminative accuracy of the students, nurses, and physicians.RESULTS: In 827 out of 1,010 patients, in-hospital mortality rates were predicted to be 11%, 15%, and 17% by medical students, nurses, and physicians, respectively. The estimations of students, nurses, and physicians were all associated with in-hospital mortality (OR 5.8, 95% CI [3.7, 9.2], OR 4.7, 95% CI [3.0, 7.3], and OR 7.7 95% CI [4.7, 12.8], respectively). Discriminative accuracy was moderate for all students, nurses, and physicians (between 0.58 and 0.68). When more estimations were of non-survival, the odds of non-survival increased (OR 2.4 95% CI [1.9, 3.1]) per additional estimate, AUROC 0.70 (0.65, 0.76). For 6-month mortality predictions, similar results were observed.CONCLUSIONS: Based on the initial examination, students, nurses, and physicians can only moderately predict in-hospital and 6-month mortality in critically ill patients. Combined estimations led to more accurate predictions and may serve as an example of the benefit of multidisciplinary clinical care and future research efforts.