The aging population faces two conditions that threaten healthy aging: high fat mass (obesity) and low muscle mass and function (sarcopenia). The combination of both—referred to as sarcopenic obesity—synergistically increases the risk of adverse health outcomes. The two conditions often co-occur because they reinforce each other and share common etiologies, including poor nutrition and inactivity. All aging people are at risk of gaining weight and losing muscle mass and could benefit from improvements in physical activity, exercise and dietary intake. one specific window of opportunity is during the transient time of retirement, as older adults already need to restructure their daily activities. It is key to change lifestyle behavior in a sustainable manner, providing scientifically proven, personalized, and acceptable principles that can be integrated in daily life. Health technologies (e.g., applications) can provide promising tools to deliver personalized and appealing lifestyle interventions to a large group of people while keeping health care costs low. Several studies show that health technologies have a strong positive effect on physical activity, exercise and dietary intake. Specifically, health technology is increasingly applied to older people, although strong evidence for long term effects in changing lifestyle behavior is generally lacking. Concluding, technology could play an important role in the highly warranted prevention of sarcopenic obesity in older adults. Although health technology seems to be a promising tool to stimulate changes in physical activity, exercise and dietary intake, studies on long lasting effects and specifically targeted on older people around the time of retirement are warranted.
The aim of this qualitative study was 1) to investigate how generalist PTs, OTs and ETs provide work-focused healthcare and 2) to obtain insight into their perceived barriers and needs that afect their ability to address occupa- tional factors. Methods: An exploratory qualitative study using three focus groups.
MULTIFILE
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) (ie, progressive exercise provocation in association with serial electrocardiograms [ECG], hemodynamics, oxygen saturation, and subjective symptoms) and measurement of ventilatory gas exchange amounts to a superior method to: 1) accurately quantify cardiorespiratory fitness (CRF), 2) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiologic mechanism(s) and/or performance differences, and 3) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown etiology where the data gained from this form of ET is highly valuable in terms of clinical decision making