The world of electric mobility and charging infrastructure has accelerated in recent years: from a start-up to a mature market. During the last decade, researchers at Amsterdam University of Applied Sciences have contributed to making the rollout and use of charging infrastructure smarter. By analysing data, simulating future scenarios, testing in practice and developing the necessary hardware, a step towards a mature market has been taken.In this book, we give you insight into this research, focusing on the last five years in which the Future Charging research project took place. We wish you a lot of reading pleasure and inspiration in order to jointly take the next step towards a zero-impact world through mobility.
On the eve of the large-scale introduction of electric vehicles, policy makers have to decide on how to organise a significant growth in charging infrastructure to meet demand. There is uncertainty about which charging deployment tactic to follow. The main issue is how many of charging stations, of which type, should be installed and where. Early roll-out has been successful in many places, but knowledge on how to plan a large-scale charging network in urban areas is missing. Little is known about return to scale effects, reciprocal effects of charger availability on sales, and the impact of fast charging or more clustered charging hubs on charging preferences of EV owners. This paper explores the effects of various roll-out strategies for charging infrastructure that facilitate the large-scale introduction of EVs, using agent-based simulation. In contrast to previously proposed models, our model is rooted in empirically observed charging patterns from EVs instead of travel patterns of fossil fuelled cars. In addition, the simulation incorporates different user types (inhabitants, visitors, taxis and shared vehicles) to model the diversity of charging behaviours in an urban environment. Different scenarios are explored along the lines of the type of charging infrastructure (level 2, clustered level 2, fast charging) and the intensity of rollout (EV to charging point ratio). The simulation predicts both the success rate of charging attempts and the additional discomfort when searching for a charging station. Results suggest that return to scale and reciprocal effects in charging infrastructure are considerable, resulting in a lower EV to charging station ratio on the longer term.
Since the first uptake of electric vehicles, policy makers are questioning how to rollout public charging infrastructure in an efficient manner, such that user convenience balances with costs of investment. In some metropolitan areas, the first phase of rollout has been passed, meaning an optimized deployment of future charging stations for electric vehicles (EVs) becomes important to improve the charging infrastructure and ensure customer satisfaction and sufficient service provision. Complex system literature shows that network vulnerability is an important metric, yet, charging infrastructure has not yet been a subject of these simulation models so far. This research, based on real-world data, provides a novel approach for improving the roll-out strategy of municipalities, by treating the charge infrastructure as a complex network of charging stations and defining vulnerability in respect to the availability of its surrounding charging stations within relevant walking distance.
Snelheid is één van de belangrijkste basisrisicofactoren in het verkeer. Hoe sneller er gereden wordt in een auto hoe groter de kans op (zware) ongevallen2 en hoe hoger de uitstoot. Veel verkeersveiligheidsbeleid spitst zich daarom toe op het voorkomen van te hoge snelheden en het voorkomen van te grote snelheidsverschillen. ISA, Intelligente Snelheid Adaptatie, is een van de technologische oplossingen die kan bijdragen aan het voorkomen van te hoge snelheden in auto’s. ISA kent vele verschijningsvormen, van informerend (via slimme technologie wordt de bestuurder geïnformeerd over de geldende maximumsnelheid) tot dwingend (de auto wordt fysiek beperkt om harder te rijden dan de maximumsnelheid). Inmiddels bestaat voldoende bewijs dat de acceptatiegraad van ISA hoog kan zijn, wanneer het systeem perfect werkt. De praktijk is echter weerbarstig, doordat systemen (soms) technisch kunnen falen of onvoldoende correcte informatie doorgeven aan de bestuurder. Dit staat de acceptatie van ISA in de weg; niet in de laatste plaats omdat onderzoek heeft aangetoond dat bestuurders hogere normen hanteren voor het accepteren van technisch falen in zelfrijdende voertuigen5. Een (rijtaakondersteunend)systeem moet ten alle tijden beter functioneren dan de mens. In ACTI-I wordt dit spanningsveld onderzocht. De vraag luidt: Welke impact heeft technisch falen op de acceptatie van ISA? Deze vraag wordt beantwoord middels 1) literatuuronderzoek naar falen en acceptatie van technologische systemen; 2) rijsimulator/deelnemersonderzoek naar de waardering voor ISA en of, en zo ja hoe, de waardering verandert al naar gelang het falen van het systeem toeneemt. We werken hiervoor samen met drie MKB’s die ISA systemen ontwikkelen en verkopen aan particulieren en de overheid. De resultaten van ACTI-I zullen worden gepubliceerd en vormen de basis voor een RAAK-MKB onderzoek naar de relatie tussen technisch falen en de bestuurdersacceptatie van ISA en andere geavanceerde rijhulpsystemen
Eerstelijns gesubsidieerde rechtshulp door professionals van Het Juridisch Loket (HJL) sluit niet goed aan op de behoeften van cliënten met multiproblematiek en hun dienstverlening sluit onvoldoende aan bij andere disciplines in het sociale domein. Daarom willen rechtshulpprofessionals van HJL samen met Hogeschool Utrecht, diverse professionals van gemeenten en organisaties voor maatschappelijke dienstverlening praktijkgericht onderzoek uitvoeren naar een integrale aanpak, waarmee cliënten met multiproblematiek doeltreffend kunnen worden gesignaleerd en ondersteund bij wat zij werkelijk nodig hebben. De vraag is of zo’n integrale aanpak implementeerbaar is, daadwerkelijk voorziet in oplossingen voor problemen van de doelgroep en hun rechtshulpvragen afnemen. In dit onderzoek wordt het vraagstuk van optimale dienstverlening door HJL, benaderd vanuit ‘klantwaarde’ ofwel de ‘opbrengsten van de dienstverlening’ voor de cliënt. Dit in de marketingwetenschap vergaand ontwikkeld concept leent zich goed voor vraagstukken in het publieke domein omdat hiermee het klantperspectief voorop wordt gesteld. Dat is in dienstverlening niet altijd vanzelfsprekend. Professionals van HJL kijken nog teveel door hun ‘juridische bril’ naar cliënten met multiproblematiek waardoor ‘andere’ problemen nauwelijks worden opgemerkt. Met dit project wordt getracht om professionals innovatieve methoden en instrumenten aan te reiken waarmee een goede inbedding van HJL in locale hulpverleningsinfrastructuren kan worden gerealiseerd. De centrale onderzoeksvraag in het project luidt: hoe kunnen eerstelijns rechtshulpprofessionals van HJL hun dienstverlening aan cliënten met multiproblematiek verbeteren? Het onderzoek wordt (deels) uitgevoerd in de vorm van een parallelle casestudie. Vestigingen van HJL en sociale netwerkpartners vormen de cases. Onderdeel van deze casestudie is dat van elkaars praktijken wordt geleerd door middel van een crosscase-analyse. Beoogde opbrengsten van het project zijn nieuwe kennis over cliënten met multiproblematiek, diagnostisch instrumentarium voor eerstelijns rechtshulpprofessionals, een nieuwe klantgerichte en integrale aanpak van dienstverlening en state-of-the-art onderwijsmateriaal. De projectopbrengsten worden in publicaties, workshops en conferenties gedissemineerd en geborgd in de juridische opleidingen aan Hogeschool Utrecht.
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.