from the Article: "Operating rooms (ORs) more and more evolve into high-tech environments with increasing pressure on finances, logistics, and a not be neglected impact on patient safety. Safe and cost-effective implementation of technological equipment in ORs is notoriously difficult to manage, specifically as generic implementation activities omit as hospitals have implemented local policies for implementations of technological equipment. )e purpose of this study is to identify success factors for effective implementations of new technologies and technological equipment in ORs, based on a systematic literature review. We accessed ten databases and reviewed included articles. )e search resulted in 1592 titles for review, and finally 37 articles were included in this review. We distinguish influencing factors and resulting factors based on the outcomes of this research. Six main categories of influencing factors on successful implementations of medical equipment in ORs were identified: “processes and activities,” “staff,” “communication,” “project management,” “technology,” and “training.” We identified a seventh category “performance” referring to resulting factors during implementations. We argue that aligning the identified influencing factors during implementation impacts the success, adaptation, and safe use of new technological equipment in the OR and thus the outcome of an implementation. The identified categories in literature are considered to be a baseline, to identify factors as elements of a generic holistic implementation model or protocol for new technological equipment in ORs."
MULTIFILE
Hoe kunnen leeromgevingen in het beroepsonderwijs een rol vervullen bij het oplossen van complexe maatschappelijke problemen? Ilya Zitter, bijzonder lector Leeromgevingen in het Beroepsonderwijs bij Hogeschool Utrecht (HU), onderzoekt hoe je leeromgevingen zo kunt ontwerpen dat een innovatief, lerend systeem ontstaat, zonder sterke scheiding tussen onderwijs en praktijk. Op 25 maart gaf Zitter haar openbare les.
Inertial measurement units (IMUs) allow for measurements of kinematic movements outside the laboratory, persevering the athlete-environment relationship. To use IMUs in a sport-specific setting, it is necessary to validate sport-specific movements. The aim of this study was to assess the concurrent validity of the Xsens IMU system by comparing it to the Vicon optoelectronic motion system for lower-limb joint angle measurements during jump-landing and change-of-direction tasks. Ten recreational athletes performed four tasks; single-leg hop and landing, running double-leg vertical jump landing, single-leg deceleration and push off, and sidestep cut, while kinematics were recorded by 17 IMUs (Xsens Technologies B.V.) and eight motion capture cameras (Vicon Motion Systems, Ltd). Validity of lower-body joint kinematics was assessed using measures of agreement (cross-correlation: XCORR) and error (root mean square deviation and amplitude difference). Excellent agreement was found in the sagittal plane for all joints and tasks (XCORR > 0.92). Highly variable agreement was found for knee and ankle in transverse and frontal plane. Relatively high error rates were found in all joints. In conclusion, this study shows that the Xsens IMU system provides highly comparable waveforms of sagittal lower-body joint kinematics in sport-specific movements. Caution is advised interpreting frontal and transverse plane kinematics as between-system agreement highly varied.