Citizen science – the active participation of lay people in research – may yield crucial local knowledge and increase research capacity. Recently, there is growing interest to understand benefits for citizen scientists themselves. We studied the perceived impacts of participation in a public health citizen science project on citizen scientists in a disadvantaged neighbourhood in the Netherlands. Local citizen scientists, characterised by low income and low educational level – many of whom were of migrant origin – were trained to interview fellow residents about health-enhancing and health-damaging neighbourhood features. Experiences of these citizen scientists were collected through focus groups and interviews and analysed using a theoretical model of potential citizen science benefits. The results show that the citizen scientists perceived participation in the project as a positive experience. They acquired a broader understanding of health and its determinants and knowledge about healthy lifestyles, and took action to change their own health behaviour. They reported improved self confidence and social skills, and expanded their network across cultural boundaries. Health was perceived as a topic that helped people with different backgrounds to relate to one another. The project also induced joint action to improve the neighbourhood’s health. We conclude that citizen science benefits participants with low educational or literacy level. Moreover, it seems to be a promising approach that can help promote health in underprivileged communities by strengthening personal skills and social capital. However, embedding projects in broader health promotion strategies and long-term engagement of citizen scientists should be pursued to accomplish this.
From PLoS website: In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
MULTIFILE